

SERIAL NO : _____ REGISTRATION : _____

N511NG

DC-POH-002-X-A-6

PILOT OPERATING HANDBOOK

LIGHT-SPORT

DATE: 23 APRIL 2021

REVISION 3.0

SLING AIRCRAFT | HANGAR 8 TEDDERFIELD AIR PARK, JHB SOUTH,EIKENHOF, 1872 SOUTH AFRICA PO BOX 308, EIKENHOF, 1872, SOUTH AFRICA Phone :+27 11 948 9898 | Information :technical@slingaircraft.com

Airplane model:	Sling LSA
Manufacturer:	Sling Aircraft (Pty) Ltd
Airplane Serial Number:	
Date of Construction:	••••••
Registration:	••••••
Airworthiness Category:	Light-Sport Aircraft (LSA)
Issue Date of POH:	2021/04/23

Please advise Sling Aircraft upon change of ownership of this aircraft.

This airplane must be operated in compliance with information and limitations contained herein. This pilot operating handbook must be available on board of the airplane at all times.

NOTICE

This manual is written for the standard 912 iS powered Sling LSA, as manufactured on premises by Sling Aircraft (Pty) Ltd. Differences applicable to the standard 912 iS powered Sling LSA, such as a 912 ULS powered Sling LSA, are included in a supplement in Section 9 of this handbook.

Aircraft which differ from the production standard, in whatever way, are not addressed in this manual, except to the extent said aircraft corresponds with the production standard.

NOTICE

This manual, although written to accommodate all regions' regulations, may contain specific references to South African regulations. Therefore, the manual can be regarded as a manual accordingly consistent with RSA regulations only.

Compliance Statement

The ASTM Standards used for the design, construction, and continued airworthiness for the Sling LSA are:

- ASTM F2245 Specification for Design and Performance of a Light Sport Airplane
- ASTM F2295 Practice for Continued Operational Safety Monitoring of a Light Sport Aircraft
- ASTM F2972 Specification for Light Sport Aircraft Manufacturer's Quality Assurance System

Quality Assurance records are stored with the manufacturer in South Africa, at the address below:

Sling Aircraft (Pty) Ltd.

Hangar 8, Tedderfield Air Park, Johannesburg South, Eikenhof, 1872, South Africa PO Box 308, Eikenhof, 1872, South Africa Tel: +27 11 948 9898 <u>sales@slingaircraft.com</u>

Continued Operational Safety Monitoring

Manufacturer Responsibilities:

Sling Aircraft has a procedure in place to monitor the safety of the fleet and to alert pilots of any potential safety issues. The owner of a Light-Sport Aircraft is responsible for making sure they receive pertinent safety information and complying with bulletins. The owner of a Light-Sport Aircraft is also responsible for alerting the manufacturer of any potential flight safety issues they may encounter.

Owner/Operator Responsibilities:

- Each owner/operator of an LSA shall read and comply with the maintenance and continued airworthiness information, along with all instructions provided by the manufacturer.
- Each owner/operator of an LSA shall be responsible for providing the manufacturer with current contact information, where the manufacturer may send the owner/operator supplemental notification bulletins/letters.
- The owner/operator of an LSA shall be responsible for notifying the manufacturer of any flight safety issues or significant service difficulty, upon discovery.
- The owner/operator of an LSA shall be responsible for complying with all manufacturer issued notices of corrective action and with all applicable aviation authority regulations, with regards to maintaining the airworthiness of the LSA.
- The owner of an LSA shall ensure that any needed corrective action be completed as specified in a bulletin/letter/notice, or by the next scheduled annual inspection.
- Should an owner/operator not comply with any mandatory service requirements, the LSA shall be considered not in compliance with applicable ASTM standards and may be subject to regulatory action by the presiding aviation authority in the respective region.

Record of Revisions

Any revisions to this Pilots Operating Handbook must be recorded in the following table and, where applicable, be endorsed by the responsible airworthiness authority.

Revision numbers and dates appear at the foot of each page.

Rev. No.	Affected Section	Affected Pages	Date of Issue	Approved by	Sign
1.1	All	All	2011/04/20		
1.2	All	All	2012/03/12		
1.3	All	All	2012/05/10		
2.0	All	All	2012/06/04		
2.1	2	7	2012/09/01		
2.2	All	All	2012/11/01		
2.3	All	All	2014/11/10		
2.4	2	2-10/2-11	2015/03/30		
2.5	1, 2, 4, 6, 7	All	2018/09/21		
3.0	All	All	2021/04/23	A. litmen	Att

List of Manual Revisions

Page	Page Status	Latest Revision
i	Revised	3.0
ii	Revised	3.0
iii	Revised	3.0
iv	Revised	3.0
v	Revised	3.0
vi	Revised	3.0
vii	Revised	3.0
viii	Revised	3.0
ix	Revised	3.0
x	Removed	3.0
xi	Removed	3.0
1-0	Inserted	3.0
1-1	Revised	3.0
1-2	Revised	3.0
1-3	Revised	3.0
1-4	Revised	3.0
1-5	Revised	3.0
1-6	Revised	3.0
1-7	Revised	3.0
1-8	Revised	3.0
1-9	Revised	3.0
1-10	Revised	3.0
1-11	Revised	3.0
1-12	Revised	3.0
1-13	Revised	3.0
1-14	Revised	3.0
1-15	Revised	3.0
1-16	Removed	3.0
1-17	Removed	3.0
1-18	Removed	3.0
2-0	Inserted	3.0
2-1	Revised	3.0

Page	Page Status	Latest revision
2-2	Revised	3.0
2-3	Revised	3.0
2-4	Revised	3.0
2-5	Revised	3.0
2-6	Revised	3.0
2-7	Revised	3.0
2-8	Revised	3.0
2-9	Revised	3.0
2-10	Revised	3.0
2-11	Revised	3.0
2-12	Revised	3.0
2-13	Revised	3.0
2-14	Revised	3.0
2-15	Revised	3.0
2-16	Removed	3.0
2-17	Removed	3.0
3-0	Inserted	3.0
3-1	Revised	3.0
3-2	Revised	3.0
3-3	Revised	3.0
3-4	Revised	3.0
3-5	Revised	3.0
3-6	Revised	3.0
3-7	Revised	3.0
3-8	Revised	3.0
3-9	Revised	3.0
3-10	Revised	3.0
3-11	Revised	3.0
3-12	Revised	3.0
3-13	Revised	3.0
3-14	Revised	3.0
3-15	Revised	3.0

Document Number: DC-POH-002-X-A-6 Revision: 3.0 Page | vi Date: 2021/04/23

Sling LSA Pilot Operating Handbook

Section 0

Preface

Page	Page	Latest
	Status	Revision
3-16	Revised	3.0
3-17	Revised	3.0
3-18	Revised	3.0
3-19	Revised	3.0
4-0	Inserted	3.0
4-1	Revised	3.0
4-2	Revised	3.0
4-3	Revised	3.0
4-4	Revised	3.0
4-5	Revised	3.0
4-6	Revised	3.0
4-7	Revised	3.0
4-8	Revised	3.0
4-9	Revised	3.0
4-10	Revised	3.0
4-11	Revised	3.0
4-12	Revised	3.0
4-13	Revised	3.0
4-14	Revised	3.0
4-15	Revised	3.0
4-16	Revised	3.0
4-17	Revised	3.0
4-18	Revised	3.0
4-19	Revised	3.0
4-20	Revised	3.0
4-21	Inserted	3.0
5-0	Inserted	3.0
5-1	Revised	3.0
5-2	Revised	3.0
5-3	Revised	3.0
5-4	Revised	3.0
5-5	Revised	3.0
6-0	Inserted	3.0
6-1	Revised	3.0

Page	Page Status	Latest revision
6-2	Revised	3.0
6-3	Revised	3.0
6-4	Revised	3.0
6-5	Revised	3.0
6-6	Revised	3.0
6-7	Revised	3.0
6-8	Revised	3.0
6-9	Removed	3.0
7-0	Inserted	3.0
7-1	Revised	3.0
7-2	Revised	3.0
7-3	Revised	3.0
7-4	Revised	3.0
7-5	Revised	3.0
7-6	Revised	3.0
7-7	Revised	3.0
7-8	Revised	3.0
7-9	Revised	3.0
7-10	Revised	3.0
7-11	Revised	3.0
7-12	Revised	3.0
7-13	Revised	3.0
7-14	Revised	3.0
7-15	Revised	3.0
7-16	Revised	3.0
7-17	Revised	3.0
7-18	Revised	3.0
7-19	Revised	3.0
7-20	Revised	3.0
7-21	Revised	3.0
7-22	Revised	3.0
7-23	Revised	3.0
7-24	Revised	3.0
7-25	Revised	3.0

Document Number: DC-POH-002-X-A-6 Revision: 3.0 Page | vii Date: 2021/04/23

Sling LSA Pilot Operating Handbook

Section 0

Preface

Page	Page	Latest
1 uge	Status	Revision
7-26	Revised	3.0
7-27	Revised	3.0
7-28	Revised	3.0
7-29	Removed	3.0
7-30	Removed	3.0
7-31	Removed	3.0
7-32	Removed	3.0
7-33	Removed	3.0
7-34	Removed	3.0
7-35	Removed	3.0
7-36	Removed	3.0
7-37	Removed	3.0
7-38	Removed	3.0
8-0	Inserted	3.0
8-1	Revised	3.0
8-3	Revised	3.0
8-4	Revised	3.0
8-5	Revised	3.0
8-6	Revised	3.0
8-7	Revised	3.0
8-8	Removed	3.0
8-9	Removed	3.0
9-0	Inserted	3.0
9-1	Revised	3.0
9-2	Revised	3.0
9-3	Revised	3.0
9-4	Revised	3.0
9-5	Revised	3.0
9-6	Revised	3.0
9-7	Revised	3.0
9-8	Revised	3.0
9-9	Revised	3.0
9-10	Revised	3.0

Page	Page Status	Latest revision
9-11	Revised	3.0
9-12	Revised	3.0
9-13	Revised	3.0
9-14	Revised	3.0
9-15	Revised	3.0
9-16	Revised	3.0
9-17	Revised	3.0
9-18	Revised	3.0
9-19	Revised	3.0
9-20	Revised	3.0
9-21	Revised	3.0
9-22	Revised	3.0

Table of Contents

1	General Information	1-0
2	Limitations	2-0
3	Emergency Procedures	3-0
4	Normal Procedures	4-0
5	Performance	5-0
6	Weight and Balance	6-0
7	Aircraft and Systems	7-0
8	Ground Handling and Servicing	8-0
9	Supplementary Information	9-0

1 General Information

1.1	Introduction to Airplane	1-1
1.2	Warnings, Cautions and Notes	1-2
1.3	Aircraft 3-View Drawing	1-3
1.4	Data for Sling LSA Aircraft and Systems	1-5
1.5	Terminology, Symbols and Conversion Factors	1-10
1.6	Supporting Documents	1-15

1.1 Introduction to Airplane

The Sling LSA is a two seat (side-by-side), single engine, tricycle undercarriage, aluminium aircraft with a conventional low wing design and is compliant with the requirements of the FAA Light Sport Aircraft (LSA) category according to ASTM Standards F2245, F2279 and F2295.

The aircrafts design is based on ASTM 2245 certification standards and has a maximum all up weight of 600kg (1,320lb). The design has been tested against and complies with this standard.

With only minor modifications to the aircraft and the application of a revised Pilot Operating Handbook, the aircraft may be made to comply with the requirements of the EASA (*European Aviation Safety Agency*) CS-VLA (*Certification Standard Very Light Aircraft*) standard, having a maximum all up weight of 700 kg (1543 lb).

The Sling LSA is primarily intended for recreational and cross-country flying. It is not intended for aerobatic operation. It is considered to be suitable for use as a trainer. This Pilot Operating Handbook has been prepared to provide pilots with information for the safe and effective operation of the Sling LSA.

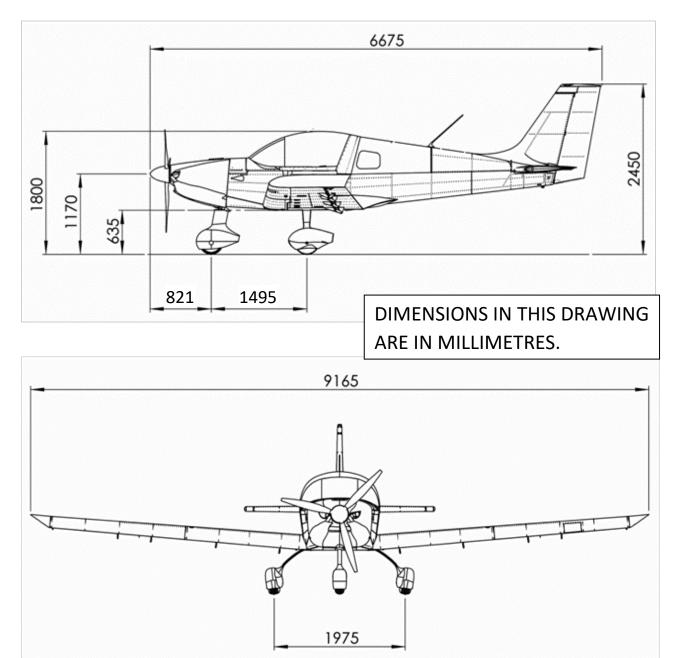
1.2 Warnings, Cautions and Notes

The following definitions apply to warnings, cautions and notes in the Pilot Operating Handbook.

WARNING

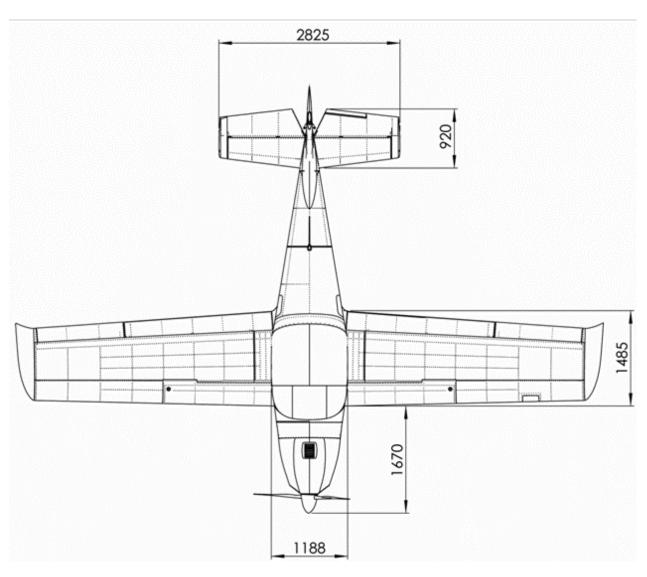
Warning – Indicates that non-observation of the corresponding procedure leads to a serious and immediate degradation of flight safety.

CAUTION


Caution – Indicates that non-observation of the corresponding procedure leads to minor and possible long-term degradation of flight safety.

NOTE	1
NOTE NOTE	
L	'

Note – Draws special attention to any item that is not related to safety but is still important or unusual.


1.3 Aircraft 3-View Drawing

CAUTION

Do not use these values for weight and balance, as they are overall dimensions for illustration purposes and do not use the prescribed reference plane.

DIMENSIONS IN THIS DRAWING ARE IN MILLIMETRES.

1.4 Data for Sling LSA Aircraft and Systems

1.4.1 Wing

Parameter	Value
Wingspan	9.165 m / 30ft. 0.8in.
Mean Aerodynamic Chord	1.339 m / 52.7 in.
Wing Surface Area	11.845 m ² / 127.55 ft ²
Wing Loading	59.10 kgm ⁻² / 11.7 lbs/ft ²
Aspect Ratio	7.04
Taper Ratio	1.375
Dihedral	5°

1.4.2 Fuselage

Parameter	Value
Fuselage Length	5.77 m / 18ft. 11in.
Overall Length	6.675 m / 21ft. 11in.
Overall Width	1.15 m / 45.3 in.
Overall Height	2.5 m /98.4 in.

1.4.3 Empennage

Parameter	Value
Horizontal Stabilizer Span	2.825 m / 9ft. 3in.
Horizontal Stabilizer Surface Area	0.96 m ² / 10.33 ft ²
Horizontal Stabilizer Angle of	-4°
Incidence	-4
Elevator Surface Area	1.02 m ² / 10.98 ft ²
Vertical Stabilizer Span	1.47 m / 4ft. 10in.
Vertical Stabilizer Surface Area	0.53 m ² / 5.70 ft ²
Rudder Surface Area	0.59 m ² / 6.35 ft ²

1.4.4 Landing Gear

Parameter / Item	Value
Wheel Track	1.95 m / 6ft. 5in.
Wheelbase	1.41 m /4ft. 6in.
Brake Type	Hydraulic
Main Gear Tyres	15x6.00-6; 6-ply (2.2 bar / 32 psi)
Nose Wheel Tyres	5.00-5; 6-ply (1.8bar / 26 psi)

1.4.5 Control Surface Travel Limits

Parameter	Value
Ailerons	24° up / down (±2°)
Elevator	30° up / down (±2°)
Trim Tab	5° up / 20° down (±5°)
Rudder	25° left / right (±2°)
Flaps	0° up / 32° down (±3°)

1.4.6 Engine

Parameter / Item	Value	
Manufacturer	Bombardier-Rotax GmbH	
Model	912 iS	
Туре	4-cylinder, horizontally opposed, with an overall displacement of 1352cc, mixed cooling, fuel injection, integrated reduction gearbox with torque damper (see 7.11 Engine).	
Maximum Power	73.5 kW (100 hp) at 5,800 rpm (max. 5 minutes) 69 kW (93 hp) at 5,500 rpm (continuous)	
Gearbox Ratio	2.43 Reduction (from engine to propeller)	
Alternative	For a Sling LSA fitted with the 912 ULS engine, please refer to the applicable supplement at the end of this manual.	

1.4.7 Propeller

Parameter / Item	Value
Manufacturers	Warp Drive, Whirlwind, Sensenich
Number of Blades	3
Diameter	1.78-1.83 m / 70-72 in.
Material/Type	Composite

1.4.8 Fuel

Parameter / Item	Value	
Fuel Grade: Anti-Knock	Minimum RON 95	
Fuel Grade: MOGAS	EN 228 Super	
ruel Glaue. MOGAS	EN 228 Super Plus	
Fuel Grade: AVGAS	AVGAS 100 LL (ASTM D910)	
	South Africa - One tank integrated in the	
	leading edge of the <i>right</i> wing.	
Fuel Tanks	International/US – Two tanks integrated in the	
FUELTAIIKS	leading edges of <i>both</i> wings.	
	Both – Tank(s) equipped with finger strainers	
	(in the pick-up line) and drain fittings	
Total Eucl Capacity	South Africa – 75 L (19.8 US Gallons)	
Total Fuel Capacity	International/US – 150 L (39.6 US Gallons)	
Total Useable Fuel	South Africa – 73 L (19.3 US Gallons)	
Capacity	International/US – 146 L (38.6 US Gallons)	
Total Tank Capacity	75 litres (19.8 US gallons) per tank	
Total Tank Useable Fuel	73 litres (19.3 US gallons) per tank	
	For Sling LSA fitted with the 912 ULS engine,	
Alternative	please refer to the applicable supplement at the	
	end of this manual.	

1.4.9 Oil System

Parameter / Item	Value
Oil System Type	Forced with external oil reservoir
Oil Grade	Automotive grade API "SG" type oil, or higher, preferably synthetic, or semi-synthetic. When operating on unleaded fuels or MOGAS, fully synthetic oil is recommended. Conventional aircraft oils (a.d. = ashless dispersant) are not suitable. (Refer to the latest revision of the engine operator's manual for more)
Oil Viscosity	Multi-grade oils are recommended
Oil Capacity	Approx. 3.5 litres (3.7 Quarts/7.4 pints) from dry

1.4.10 Cooling

Parameter / Item	Value
Cooling System	<i>Mixed</i> – Air and closed-circuit pressurized liquid.
Cooling System	Air cooled cylinders and liquid cooled cylinder heads.
Coolant	Ethylene glycol-based coolant mixed 1:1 with distilled
Coolant	water.
Coolant Capacity	Approx. 2.5 litres (2.64 quarts / 5.28 pints)
	For Sling LSA fitted with the 912 ULS engine, please
Alternative	refer to the applicable supplement at the end of this
	manual.

1.4.11 Maximum Weights

Parameter	Value
Maximum Take-off Weight	600 kg (1,320 lb.)
Maximum Landing Weight	600 kg (1,320 lb.)
Maximum Baggage Weight	15 kg (33 lb.)
Front Luggage Compartment Max.	15 kg (33 lb.)
Weight	13 kg (33 lb.)
Rear Luggage Compartment Max.	15 kg (33 lb.)
Weight	13 kg (33 kg.)

1.4.12 Standard Weights

Parameter	Value
Standard Configuration Empty Weight	370 kg (814 lb.)
Maximum Useful Load	230 kg (506 lb.)

1.4.13 Specific Loadings

Parameter	Value
Wing Loading (MAUW)	50.65 kg/m ² (10.0 lb/ft ²)
Power Loading (MAUW)	6.00 kg/kW (13.2 lb/hp)

1.5 Terminology, Symbols and Conversion Factors

1.5.1 General Terminology

Acronym	Description			
AC	Alternating Current			
AHRS	Attitude and Heading Reference System			
ΑΚΙ	Anti-Knock Index			
ALT	Altimeter			
API	American Petroleum Institute			
ASI	Airspeed Indicator			
AVGAS	Aviation Gasoline			
СОМ	Communication (Radio)			
EFIS	Electronic Flight Information System			
FAA	Federal Aviation Authority			
FAR	Federal Aviation Regulations			
GLS	GPS Landing System			
GmbH	Gesellschaft mit beschränkter Haftung (company with limited liability)			
GPS	Global Positioning System			
IFR	Instrument Flying Rules			
IMC	Instrument Meteorological Conditions			
LE	Leading Edge			
LED	Light Emitting Diode			
MOGAS	Automobile (car) Gasoline			
MON	Motor Octane Number			
NGL	Normal Ground Line			
NRV	Non-Return Valve			
РОН	Pilot Operating Handbook			
PTT	Push-To-Talk (Button)			
RSA	Republic of South Africa			
RON	Research Octane Number			
VFR	Visual Flying Rules			
VMC	Visual Meteorological Conditions			
VSI	Vertical Speed Indicator			

1.5.2 Speed and Performance Terminology

Acronym	Description			
IAS	Indicated Airspeed.			
KCAS	Calibrated Airspeed – the indicated airspeed corrected for position and instrument error, expressed in knots.			
KIAS	Indicated Airspeed – the speed shown on the airspeed indicator, expressed in knots.			
KTAS	True Airspeed – the airspeed of the aircraft relative to the undisturbed air through which is passes.			
TAS	True Airspeed.			
VA	Manoeuvring speed.			
V _{BG}	Best Glide Speed – the speed (at MAUW) which results in the greatest gliding distance for loss in unit altitude.			
V _{FE}	Maximum Flap Extended Speed – the highest speed permissible with wing flaps deployed.			
V _H	Maximum Speed – the maximum speed in level flight at maximum continuous power.			
VLOF	Lift-off Speed – the speed at which the aircraft generally lifts off from the ground during take-off.			
V _{NE}	Never Exceed Speed – the speed that may not be exceeded at any time.			
V _{NO}	Maximum Structural Cruising Speed – the speed that should not be exceeded, except in smooth air, and then only with caution.			
V _{REF}	Reference Speed – the indicated airspeed, at 15 m (50 ft) above threshold, which is not less than $1.3V_{so}$.			
V _{ROT}	Rotation Speed – The speed at which the aircraft should be rotated about the pitch axis during take-off (i.e., the speed at which the nose wheel is lifted of the ground).			
Vs	Stall Speed – the speed at which the aircraft stalls, at MAUW, engine idling, flaps fully retracted.			
Vso	Stall Speed – the speed at which the aircraft stalls in the landing configuration, at <i>MAUW</i> , engine idling, flaps fully down.			
V _X	Best Angle of Climb Speed – the speed (at MAUW, flaps fully retracted) which results in the greatest altitude gain over a given horizontal distance (i.e., highest climb angle).			
V _Y	Best Rate of Climb Speed – the speed (at MAUW, flaps fully retracted) which results in the greatest altitude gain over a given time period.			

1.5.3 Meteorological Terminology

Acronym	Description		
ISA	International Standard Atmosphere		
	The local pressure setting that if set on the subscale of an altimeter,		
QNH	the altimeter will indicate local altitude above mean sea level.		
QFE	The local airfield pressure setting that if set on the subscale of an altimeter, the altimeter will indicate local altitude above the		
	airfield.		
ONE	The barometric pressure used for the standard altimeter setting		
QNE	(1013 hPa / 29.92 in. Hg)		

1.5.4 Engine Terminology

Acronym	Description
СНТ	Cylinder Head Temperature.
EGT	Exhaust Gas Temperature.
OHV	Overhead Valve.
RPM	Revolutions per Minute.
Coolant	Temperature of the coolant as it leaves the cooling jacket of
Temperature	cylinder head 4.

1.5.5 Airplane Performance and Flight Planning Terminology

Terminology	Description
Crosswind	The velocity of the crosswind component during take-off and
Component	landing.
G	The acceleration / load factor.
Landing Run	The distance measured during landing from actual touchdown to
Landing Run	the end of the landing run.
Landing	The distance measured during landing from clearance of a 15 m
Distance	obstacle (in the air) to the end of the landing run.
Take-off Run	The take-off distance measured from the actual start of the take-
	off run to clearance of a 15 m (50 ft) obstacle (in the air).
Take-off	The take-off distance measured from the actual start of the take-
Distance	off run to clearance of a 15 m (50 ft) obstacle (in the air).
Useable Fuel	The fuel available for flight planning.

1.5.6 Weight and Balance Terminology/Symbols

Terminology	Description		
Arm	The horizontal distance from the reference datum to the centre		
AIIII	of gravity / point load of / on the aircraft		
	Centre of Gravity, being the point at which the airplane would		
CG	balance if suspended. Value given as distance from the reference		
CG	datum or as a percentage of MAC, and has minimum and		
	maximum permissible values.		
	The reference datum is an imaginary vertical plane from which all		
Datum	horizontal distances are measured for weight and balance		
Datum	purposes. The Sling LSA datum is the forward, flat propeller		
	mounting flange on the Rotax engine		
Empty			
Weight	The weight of the airplane with engine fluids at operating levels.		
МАС	Mean Aerodynamic Chord.		
IVIAC	The average chord value of the main wing.		
MAUW	Maximum All Up Weight or Maximum Takeoff Weight.		
IVIAUV	Maximum permissible weight approved for takeoff/flight		
Maximum			
Landing	The maximum weight approved for the landing touch down		
Weight			
Moment	The product of the weight of an item multiplied by its arm		
W _R	Weight reading from scale under right main wheel during aircraft		
	weighing		
WL	Weight reading from scale under left main wheel during aircraft		
	weighing		
W _N	Weight reading from scale under nose main wheel during aircraft		
	weighing		
WE	Aircraft empty weight		
WT	Aircraft total weight		
L _R	Right main wheel arm (aft of reference)		
L	Left main wheel arm (aft of reference)		
L _N	Nose wheel arm (aft of reference)		
Μτ	Total moment arm		

1.5.7 Useful Conversion Factors

Imperial		Metric	
pound	1	0.4536	kilogram
pound per square	1	6.895	kilopascal
inch			
inch	1	25.4	millimetres
foot	1	0.3048	meters
statute mile	1	1.609	kilometres
nautical mile	1	1.852	kilometres
millibar	1	1	hectopascal
mmbur		0.1	kilopascal
imperial gallon	1	4.546	litres
US gallon	1	3.785	litres
US quart	1	0.946	litres
cubic foot	1	28.317	litres
°F		$(1.8 \times °)$	C) + 32
$(^{\circ}F - 32) \times \left(\frac{5}{9}\right)$		°C	

1.6 Supporting Documents

The following documents are regards as supporting documents to this Pilot Operating Handbook:

- 1. For aircraft fitted with the 912 iS engine
 - a. The latest revision of the Operators Manual for Rotax[®] Engine Type 912 Series, ref. no.: OM-912 i
 - b. Latest Revision of the Rotax[®] service instruction SI-912i-001, entitled "Selection of Suitable Operating Fluids".
- 2. For aircraft fitted with the 912 ULS engine
 - a. The latest revision of the Operators Manual for Rotax[®] Engine Type 912 Series, ref. no.: OM-912
 - b. Latest Revision of the Rotax[®] service instruction SI-912-016, entitled "Selection of Suitable Operating Fluids".
- 3. Garmin G3X
 - a. *The latest revision* Operators Manual for the Garmin G3X.
- 4. COM Radio, transponder and any other relevant equipment fitted to the aircraft.
 - a. *The latest revision* of the relevant equipment
- 5. Stratos 07 Magnum ballistic parachute (Optional)
 - a. *The latest revision* of the Stratos 07 Magnum ballistic parachute operator's manual.

Reference should be made to these documents for operational guidelines and instructions. These should be incorporated into the normal and emergency procedures for the aircraft where applicable.

2 Limitations

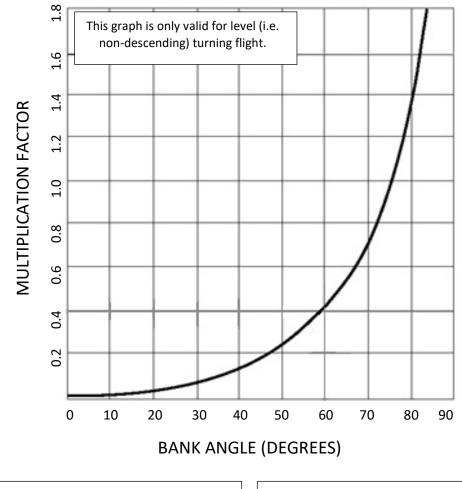
Introduction 2-1
Airspeed Limitations 2-1
Airspeed Indicator Markings 2-2
Stall Speed Adjustment for Turning Flight 2-3
Crosswind and Wind Limitation (Demonstrated) 2-4
Service Ceiling2-4
Load Factors2-4
Weights2-4
Centre of Gravity Range2-5
Prohibited Manoeuvres 2-6
Flight Crew2-6
Passengers 2-6
Kinds of Operation 2-7
Engine Limitations 2-9
Other Limitations 2-11
Flight in Precipitation 2-11
Limitation Placards 2-12

2.1 Introduction

This section includes operating limitations, instrument markings and placards necessary for the safe operation of the Sling LSA, its engine, systems, and equipment.

2.2 Airspeed Limitations

Speed		KIAS	Remarks
V _{NE}	Never Exceed Speed	135	Never exceed this speed in any operation.
V _{NO}	Maximum Structural Cruising Speed	110	Never exceed this speed unless in smooth air, and then only with caution.
V _A	Manoeuvring Speed	91	Do not make full or abrupt control movements above this speed, as this may cause stress in excess of limit load factor.
V _{FE}	Maximum Flap Extended Speed	85	Never exceed this speed unless the flaps are fully retracted.
V _H	Maximum Speed in Level Flight	118	Never exceed this speed in level flight, at MAUW.
Vs	Stall Speed	45	The aircraft will stall at this speed with flaps fully retracted, at MAUW in the most forward CG configuration and engine idling.
V _{so}	Stall Speed in Landing Configuration	40	The aircraft will stall at this speed with full flap, at maximum all up weight in the most forward CG configuration and engine idling.


2.3 Airspeed Indicator Markings

MARKING	KIAS	SIGNIFICANCE
		Flap Operating Range
White Arc	40-85	Lower Limit - V _{so} (At MAUW)
		Upper Limit - V _{fe} (Max. flap operation speed)
		Normal Operating Range
Green Arc	45-105	Lower Limit - V _s (At MAUW, max forward CG)
		Upper Limit - V _{NO} (Max. Structural Speed)
		Manoeuvres must be conducted with caution
Yellow Arc	105-135	and only in smooth air.
Red Line	135	Maximum speed for all operations.

2.4 Stall Speed Adjustment for Turning Flight

Stall speeds listed earlier in this section are for straight and level flight, at a load factor of 1g. Speeds should be adjusted for turning flight or increased load factor.

 $V_T = V + (V \times Multiplication Factor)$

- V is straight and level stall speed (at load factor = 1 g).
- V_T is stall speed in turn (nondescending).

 $V_{ST} = V\sqrt{N}$

- V is straight and level stall speed (at load factor = 1 g).
- V_{ST} is stall speed due to increased load factor.
- N is (positive) load factor.

2.5 Crosswind and Wind Limitation (*Demonstrated*)

Item	Value	
Maximum demonstrated crosswind 15 kts		
component for take-off and landing	15 Kts	

2.6 Service Ceiling

Item	Value
Service Ceiling	12,000 ft. / 3658 m

2.7 Load Factors

Item	Value
Maximum positive limit load factor	+4g
Maximum negative limit load factor	-2g
Maximum positive load factor with flap	+2g
Maximum negative load factor with flap	-1g

2.8 Weights

Item	Value
Maximum take-off weight (MAUW)	600kg / 1,320 lb.
Maximum landing weight	600kg / 1,320 lb.
Maximum total baggage weight	15kg / 33 lb.
Front luggage compartment max. weight	15kg / 33 lb.
Rear luggage compartment max. weight	15kg / 33 lb.

2.9 Centre of Gravity Range

Item	Value
Datum	Centre of front face of engine propeller
Datum	flange (without propeller extension).
Reference (Longitudinal	Upper surface of canopy sliders on cockpit
Levelling)	side skins, with canopy open.
Reference (Transverse	Upper surface of centre spar cap under pilot
Levelling)	and passenger seats.
Forward Limit	1.635 m / 5.364 ft. (20% MAC) aft of datum
Aft/Rear Limit	1.808 m / 5.931 ft. (33% MAC) aft of datum

WARNING

It is the pilot's responsibility to ensure that the airplane is properly loaded. Refer to Section 6 Weight and Balance for more information.

2.10 Prohibited Manoeuvres

The Sling LSA is approved for normal manoeuvres, including the following:

- Steep turns not exceeding 60°
- Lazy Eights
- Chandelles
- Stalls (not including whip stalls)

WARNING

Aerobatics and intentional spins are prohibited.

WARNING

Limit load factor would be exceeded by moving flight controls abruptly to their limits at a speed above V_A (91 KIAS – manoeuvring speed).

2.11 Flight Crew

Minimum crew for flight is one pilot seated on the left side.

2.12 Passengers

Only one passenger is allowed on board the aircraft (*in addition to the pilot*).

2.13 Kinds of Operation

2.13.1 Normal VFR Operation

The Sling LSA, in standard configuration, is approved only for day VFR operation with visual contact with terrain.

Minimum equipment is as follows:

Equipment
Altimeter, with encoding transponder
Airspeed Indicator
Magnetic Heading Indicator (Compass)
Fuel Gauges
Oil Pressure Indicator
Oil Temperature Indicator
Cylinder Head Temperature Indicator
Outside Air Temperature Indicator
Tachometer
Chronometer
First Aid Kit (Compliant with Local Authority)
Fire Extinguisher

2.13.2 Night Operation

Subject to the legal requirements applicable in the country of registration, the Sling LSA fitted with the following additional equipment, may also be operated at night; provided that operations are at all times conducted in VMC.

Item	
Red Beacon / Strobe Lights	
Navigation Lights	
Landing Light(s). (Two separate lights or a	
single light with two independent filaments)	
Instrument Panel Lighting	

2.13.3 IFR Operation

Provided that the aircraft is appropriately equipped, the aircraft may be safely flown under IFR. Depending on the practical and legal requirements of the judicial region the aircraft will be operated, the aircraft may also be safely flown in IMC conditions, in accordance with IFR. It is the responsibility of the aircraft operator to ensure that all legal and safety requirements are met, along with the installation of the required systems and instrumentation for IFR (and IMC) flight.

However, in the United States of America, all flights (VFR and IFR) are to be conducted in VMC, as per the applicable LSA standards.

WARNING

Notwithstanding that installed equipment may include GPS and other advanced flight and navigational aids, such equipment may not be used as the sole information source for purposes of navigation or flight, expect where specifically permitted by law. The airplane instrumentation is not certified, and applicable regulations should be complied with at all times.

NOTE

Additional equipment may be required to fulfil national or specific requirement, and may be fitted.

2.14 Engine Limitations

Instruments reflecting engine parameters should, in each case, be marked / set to reflect the minimum and maximum figures.

Always refer to the *latest edition / revision* of the engine Operators Manual for latest information regarding operating limitations.

2.14.1 Engine Start and Operation Temperature Limits

Item	Value
Start - Maximum (Ambient Temperature)	50 °C / 120 °F
Start - Minimum (Oil Temperature)	-20 °C / -13 °F
In Flight – Maximum	60 °C / 140 °F
Alternative	For Sling LSA fitted with the
	912 ULS engine, please
	refer to the applicable
	supplement at the end of
	this manual.

2.14.2 Engine Load Factor Limits (Acceleration)

Item	Value
Maximum	5 seconds at maximum -
	0.5g

2.14.3 Engine Operational and Speed Limits

Item		Value	
Engine Model		ROTAX 912 iS	
Engine Manufacturer		Bombardier-Rotax GMBH	
	Maximum take-off	73.5 kW / 100 hp at 5800 rpm,	
Power		max. 5 minutes	
	Maximum continuous	69 kW / 92 hp at 5500 rpm	
	Maximum take-off	5800 rpm, max. 5 minutes	
RPM	Maximum continuous	5500 rpm	
	Idle	1 400 rpm (minimum)	
	Minimum	N/A	
СНТ	Maximum	135 °C (275 °F)	
	Normal	75 to 110 °C (167 to 230 °F)	
	Minimum	50 °C (122 °F)	
Oil Temperature	Maximum	130 °C (266 °F)	
	Normal	90 to 110 °C (194 to 230 °F) ^(a)	
EGT	Maximum	950 °C (1742 °F)	
Coolant	Maximum	120 °C (248 °F)	
Temperature		120 C (248 F)	
	Minimum	0.8 bar (12 psi) – below 3500	
		rpm	
	Maximum	7 bar (102 psi) – permissible for	
Oil pressure		short period during cold engine	
		start	
	Normal	2 to 5 bar (29 to 73 psi) – above	
		3500 rpm	
Fuel Pressure	Minimum	2.8 bar (40.5 psi)	
	Maximum	3.2 bar (46.5 psi)	
	For Sling LSA fitted with the 912 ULS engine, please		
Alternative	refer to the applicable supplement at the end of this		
	manual.		

NOTE

a. Oil temperature must, once per flight day, exceed 100°C to boil off any moisture that may have collected in the oil.

2.15 Other Limitations

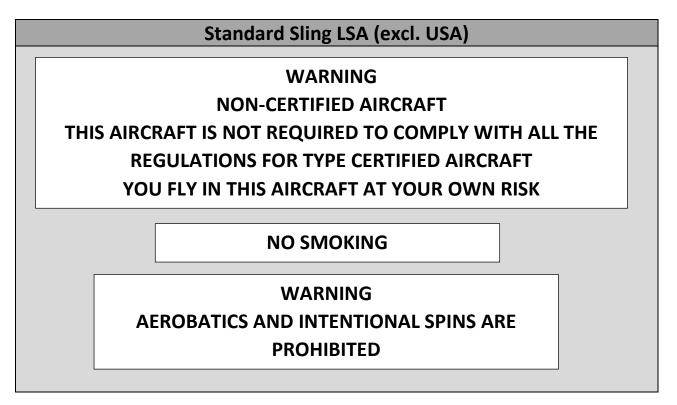
- No smoking is allowed on-board the airplane.
- VFR only flights are permitted unless the operator has equipped the aircraft correctly for IFR flight.

WARNING

Intentional flights under icing conditions are prohibited!

2.16 Flight in Precipitation

Flying though rain should be avoided, but can be achieved with no additional steps. Airplane qualities and performance are not substantially changed. However, VMC should be maintained unless flight is under IFR.

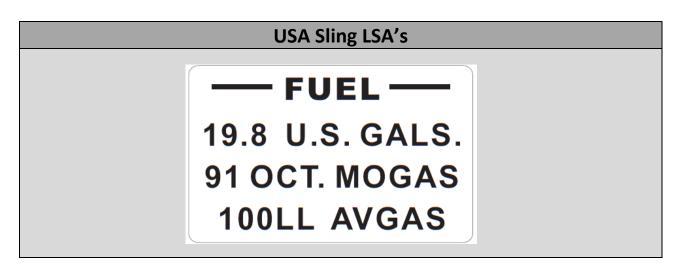

2.17 Limitation Placards

The following limitation warning placards must be placed in the aircraft and positioned in plain view of the pilot and passenger.

2.17.1 Instrument Panel

OPERATE UNDER VMC ONLY MAXIMUM PERMISSIBLE AIRSPEED 135 KIAS MAXIMUM PERMISSIBLE RPM 5 800 RPM FOR 5 MINUTES MAXIMUM CONTINUOUS RPM 5 500 MAXIMUM PERMISSIBLE MASS 600 KG/1,320 LB

2.17.2 Visible to Pilot and Passenger



2.17.3 Adjacent to Fuel Filler Cap

Standard Sling LSA (excl. USA)	
AVGAS	
OR	
MOGAS	
75 LITRES	

2.17.4 Inboard Upper Wing Flap Surface

All Sling LSA	
NO STEP	

2.17.5 Fireproof Metal Plate Attached to Aircraft

Standard Sling LSA (excl. USA)		
	ZU-###	
	CONSTRUCTOR – SLING AIRCRAFT	
	MODEL – SLING LSA	
	SERIAL NO – ###	
	ENGINE ROTAX ### – ### HP	
	MANUFACTURED - ###	

Note:

- ### represents the information applicable to the specific aircraft.
- The registration number (on above plate) is specific to the country of registration. The format shown above is the South African standard.

USA Sling LSA

AIRCRAFT IDENTIFICATION (i.e N123SL) BUILDER – SLING AIRCRAFT (PTY) LTD MODEL – SLING LSA SERIAL NO – ### MADE IN SOUTH AFRICA

2.17.6 Other Placards

The aircraft must be placarded to show the identity of:

- All Fuses / Circuit Breakers
- Magneto / Ignition switches
- Choke (912 ULS only)
- Starter
- Trim: NOSE UP and NOSE DOWN
- Flaps: UP, STAGES (1,2,3), DOWN
- All Other Switches
- Canopy handle OPEN and CLOSED position
- Ballistic parachute deployment handle, if equipped.

3 Emergency Procedures

3.1	Introduction	
3.2	Speeds for Emergency Operations	
3.3	Engine Related Emergencies	
3.4	Emergency Landing Procedures	
3.5	Smoke and Fires	3-10
3.6	Recovery from Unintentional Spin	3-13
3.7	Other Emergencies	3-14

3.1 Introduction

This section provides checklists and procedures for coping with various emergencies that may arise.

Emergencies caused by aircraft or engine malfunction are extremely rare if the appropriate procedures are followed, such as pre-flight inspections and general maintenance. Should an emergency arise however, basic guidelines described in this section should be considered and applied accordingly to mitigate the consequences of the emergency.

In case of an emergency, the pilot should remember the following priorities, in order of importance:

- **1.** FLY THE AIRCRAFT Keep control and continue flying.
- 2. ANALYSE Analyse the situation as a whole, keeping an open mind.
- **3. PROCEDURES** Apply applicable procedures.
- **4. COMMUNICATE** Inform ATC / local traffic of the situation, if time permits.

3.1.1 Rotax 912 iS checklist compatibility to Rotax 912 ULS

This section will only detail the checklists for aircraft with the Rotax 912 iS powerplant. Aircraft that make use of the 912 ULS must refer to the appendix. If the checklist differs, a note will be made at the start of said checklist.

3.2 Speeds for Emergency Operations

	Speed	KIAS	Remarks
V _{BG}	Best Glide Speed	72	This speed (MAUW, flaps up) results in the best gliding distance, along the ground. Horizontal distance travelled (in still air) is approx. 3,050m (10,000ft.) per 305m (1,000ft) decent. Glide ratio 10:1
-	Speed for in-flight engine start	> 72	Recommended speed.

3.3 Engine Related Emergencies

3.3.1 Engine Failure During Take-off

1.	Throttle IDLE
2.	Brakes APPLY
	with aircraft under control –
3.	Ignition Lanes / Magnetos OFF (вотн)
4.	Master OFF
5.	Fuel Selector OFF
6.	Fuel Pump(s) OFF (вотн)

3.3.2 Engine Failure Immediately After Take-Off

1.	Airspeed 72	2 KIAS
2.	Landing Area LO	OCATE (CLEAR GROUND)
3.	Flaps As	S NEEDED
4.	Fuel Pump(s)O	FF <i>(вотн)</i>
5.	Fuel Selector O	FF
	before touch-down —	
6.	Ignition Lanes / Magnetos O	FF <i>(вотн)</i>
7.	Master O	FF

WARNING

Flaps and elevator trim will not operate with the master switch off, and they are powered by the main bus. Make final flap and trim selection before turning master switch off.

3.3.3 Engine Failure During Flight

1.	Airspeed	72 KIAS
2.	Landing Area	CLEAR GROUND
3.	Air Start	COMMENCE
	If engine successfully restarts –	
4.	Continue	PROCEED WITH CAUTION
5.	Land	AS SOON AS POSSIBLE
	If engine should fail to restart –	
6.	Land	FORCED LANDING

3.3.4 Air-Start

Alternative for aircraft equipped with a Rotax 912 ULS.

1.	ECU Backup Switch	ON
2.	Fuel Pumps	ON (вотн)
3.	Fuel Selector	CHANGE (UNLESS 2 ND TANK DRY)
4.	Throttle	CHECK MOVEMENT
5.	Throttle	MIDDLE POSITION
6.	Master	ON
7.	Ignition / Lanes	ON (вотн)
8.	Starter	ENGAGE

NOTE

An air-start is possible with the propeller windmilling and the ECU Backup Switch ON. The starter can also be used while the propeller is windmilling, if needed.

3.3.5 Irregular Engine RPM

Alternative for aircraft equipped with a Rotax 912 ULS.

Ignition / Lanes..... ON (вотн) 1. 2. Throttle VERIFY POSITION ECU Backup Switch ON 3. Fuel Quantity..... CHECK 4. Fuel Selector..... CHANGE (UNLESS 2ND TANK DRY) 5. Fuel Pumps..... ON (BOTH) 6. Oil - Pressure CHECK 7. Oil - Temperature CHECK 8. Coolant - Temperature CHECK 9. 10. EGT - Temperature CHECK If engine continues to run rough -11. Land..... AS SOON AS POSSIBLE

3.3.6 Low Fuel Pressure

1.	Fuel Quantity	CHECK
2.	Fuel Selector	CHANGE (UNLESS 2 ND TANK DRY)
3.	Fuel Pump(s)	ON (вотн)
	If fuel pressure remains low –	
4.	Throttle	DECREASE IF POSSIBLE
	If fuel pressure remains low –	
5.	Land	AS SOON AS POSSIBLE

3.3.7 Low Oil Pressure

1.	Oil - Temperature CHECK (MAX. 130 °C) If oil temperature is high or increasing –
2.	Airspeed
3.	If oil pressure remains low or temperature remains high/increasing – Land AS SOON AS POSSIBLE ^(b)
	NOTES
	KIAS is the speed at which the aircraft is most efficient. main vigilant for an impending engine failure.

Emergency Landing Procedures 3.4

Emergency Landing without Engine Power 3.4.1

1.	Airspeed	72 KIAS
2.	Trim	FOR BEST GLIDE
3.	Landing Location	LOCATE
4.	Engine Air-start	ATTEMPT (AS TIME PERMITS) ^(a)
	lf engine fails to restart –	
5.	Fuel Pump(s)	OFF (вотн)
6.	Fuel Selector	OFF
7.	Throttle	CLOSED
8.	Flaps	FULL (PRIOR TO TOUCHDOWN)
9.	Communication	REPORT IF TIME PERMITS
10.	Passenger	BRIEF
	Immediately Before Touchdown —	
11.	Ignition / Lanes	OFF <i>(вотн)</i>
12.	Master	OFF

NOTES

a. Do not lose perspective of time trying to restart the engine. Retry a limited number of times, which will depend on the altitude where the failure occurred. Rather focus on the best possible landing location and your approach to it.

3.4.2 Precautionary Landing with Engine Power

1.	Airspeed	. 75 KIAS
2.	Flaps	. TAKE-OFF
3.	Fuel Pumps	. ON (вотн)
4.	Landing Area	. INSPECT (AS PER PROCEDURE)
5.	Flaps	. FULL (ON FINAL APPROACH)
6.	Airspeed	. 65 KIAS
7.	Brakes	. APPLY
١	when aircraft is under control –	
8.	Ignition / Lanes	. OFF <i>(вотн)</i>
9.	Fuel Selector	. OFF
10.	Master Switch	. OFF

3.4.3 Ditching

1.	Airspeed	65 KIAS
2.	Flaps	FULL
3.	Decent	ESTABLISH 50 ft/min
4.	Direction	
	i. High Wind	INTO WIND
	ii. Light Wind	PARALLEL TO SWELLS
5.	Crew	BRIEF
6.	Canopy	OPEN
7.	Touch-down Speed	SLOWEST PRACTICAL
8.	Crew	EVACUATE
9.	Life Jackets / Raft	INFLATE

3.4.4 Landing with a Flat Tyre/Damaged Wheel

- 1. Approach NORMAL
- 2. Airspeed 65 KIAS
- 3. Airspeed at flare SLOWEST PRACTICAL (≈ 60 KIAS) If nosewheel is damaged/flat –
- 4. Nosewheel KEEP OFF GROUND FOR AS LONG AS POSSIBLE WITH

ELEVATOR

NOTE

The LSA lands within ground effect since the wings are low to the ground. Anticipate an increase in lift just before touch-down unless airfoil stalls before entering ground effect.

3.5 Smoke and Fires

3.5.1 Engine Fire on Ground During Start

1.	Starter	RELEASE
2.	Fuel Selector	. CLOSE
3.	Fuel Pumps	. OFF <i>(вотн)</i>
4.	Throttle	IDLE
5.	Ignition / Lanes	. OFF <i>(вотн)</i>
6.	Master	OFF
7.	Fire Extinguisher	. RETRIEVE
8.	Exit Aircraft	
9.	Extinguish Fire	

3.5.2 Engine Fire on Ground

1.	Cabin Heat	CLOSE
2.	Fuel Selector	CLOSE
3.	Fuel Pumps	OFF (вотн)
4.	Throttle	IDLE
5.	Ignition / Lanes	OFF (вотн)
6.	Master	OFF
7.	Fire Extinguisher	RETRIEVE
8.	Exit Aircraft	
9.	Extinguish Fire	

3.5.3 Engine Fire during Take-off Run

1.	Throttle	IDLE
2.	Cabin Heat	CLOSE
3.	Brakes	APPLY UNTIL STOP
4.	Fuel Selector	CLOSE
5.	Fuel Pumps	OFF (BOTH)
6.	Ignition / Lanes	OFF (BOTH)
7.	Master	OFF
8.	Fire Extinguisher	RETRIEVE
9.	Exit Aircraft	

10. Extinguish Fire

3.5.4 Engine Fire in Flight

1.	Cabin Heat	CLOSE
2.	Cabin Air Vent	OPEN
3.	Throttle	IDLE
4.	Fuel Pumps	OFF <i>(вотн)</i>
5.	Ignition / Lanes	OFF <i>(вотн)</i>
6.	Master	OFF (AFTER FLAP DEPLOYMENT)
7.	Fuel Selector	CLOSE
8.	Airspeed	INCREASE TO VNE (135kt IAS)
9.	Forced Landing	AS PER 3.4.1

3.5.5 Electrical Fire in Flight

An electrical fire is often characterized by white smoke and an acrid smell.

- 1. Master.....OFF^{(a)(b)}
- 2. Ignition Lanes REMAIN ON
- 3. Electrical Switches OFF
- 4. Extinguisher......USE (IF POSSIBLE)
- 5. Ventilate Cabin OPEN VENTS If fire is extinguished –
- 6. Precautionary Landing..... EXECUTE (AS SOON AS POSSIBLE) If fire is NOT extinguished –
- 7. Forced Landing EXECUTE

NOTES

- a. If the location/source of the fire can be determined, electrical power can be removed from that circuit via the isolating switch. This will remove the need to switch off the master.
- b. The EFIS and associated equipment (iBox, RDAC etc.) can still be powered from the EFIS battery backup circuit when the master switch is off; provided that the EFIS system is not the source of the electrical fire.

3.5.6 Cabin Fire

1.	Master	OFF
2.	Cabin Heat	CLOSE
3.	Ventilate Cabin	OPEN VENTS
4.	Extinguisher	USE IF POSSIBLE
	If fire is extinguished –	
5.	Precautionary Landing	CONSIDER
	If fire in NOT extinguished –	
6.	Forced Landing	EXECUTE

3.6 Recovery from Unintentional Spin

WARNING

Intentional Spins are Prohibited!

Unintentional spin recovery technique:

1.	Throttle	IDLE	
2.	Lateral Control	AILERONS NEUTRAL	
3.	Yaw Control	RUDDER FULL IN OPPOSITE	
		DIRECTION OF SPIN	
	when rotation stops –		
4.	Yaw Control	RUDDER NEUTRAL	
5.	Longitudinal Control		
NOTES			

a. Do not exceed VNE or load factor limits in the recovery dive.

In the unlikely event that the aircraft enters a flat spin and the steps above do not result in recovery of control, the following may be implemented:

1.	Throttle	. IDLE
2.	Lateral Control	. AILERONS NEUTRAL
3.	Longitudinal Control	. FULL NOSE DOWN
4.	Yaw Control	. RUDDER FULL IN OPPOSITE
		. DIRECTION OF SPIN
whe	en rotation stops –	
5.	Yaw Control	. RUDDER NEUTRAL

6. Longitudinal Control..... RECOVER FROM DIVE

3.7 Other Emergencies

3.7.1 Vibration

If any abnormal engine vibrations occur:

- 1. Fuel..... CHECK QUANTITY
- 2. Fuel Selector..... CHANGE (UNLESS 2ND TANK DRY)
- 3. Fuel Pumps...... BOTH ON
- 4. ECU Backup ON
- 5. Engine RPM SET WHERE VIBRATION IS LEAST
- 6. Precautionary Landing EXECUTE

3.7.2 EFIS System Failure

If the EFIS freezes, fails, or reacts incorrectly in flight:

- 1. Straight and Level Flight MAINTAIN^(a)
- 2. EFIS Main Switch OFF
- 3. EFIS Back-Up Switch OFF

wait for 3 seconds –

- 4. EFIS Main Switch ON
- 5. EFIS Back-Up..... ON

wait for at least 15 seconds for the system to boot –

6. EFIS Functionality CONFIRM

if EFIS still not functioning correctly -

7. Land...... AS SOON AS PRACTICABLE^(b)

NOTES

- a. Through use of ground references and other instruments.
- b. Execute landing at first safe opportunity and have instrument repaired.

3.7.3 Alternator / Charge System Failure

Alternative for aircraft equipped with a Rotax 912 ULS. An alternator A/B failure is indicated by the lane warning lights.

3.7.3.1 Alternator A Failure –

Alternator A failure is evident by the steady illumination of the lane A warning light, and a drop in the main bus voltage to nominal battery voltage (+/- 12.5 V)

- 1. Lane A CYCLE SWITCH (OFF 1 SECOND, BACK ON)
- 2. Lane A VERIFY WARNING LIGHT OFF

If Lane A warning light is still on – assume alternator failure.

- 3. ECU Backup..... ON
- 4. EFIS Backup.....ON

_ _ _ _ _ _ _

- 5. Non-Essential Equipment..... ALL OFF^(a) Lights, autopilot, secondary EFIS, etc.
- 6. EFIS Brightness..... MINIMUM
- 7. Radio Communication MINIMUM
- 8. Land AS SOON AS PRACTICABLE

NOTES

a. No battery charging will occur in this scenario, and the main battery must be conserved if there is to be a subsequent alternator B failure.

NOTE

The ECU typically uses GEN A to run the engine, and GEN B is used to charge the main battery. If GEN A fails, GEN B is reprioritized to run the engine only and the main battery will no longer charged.

3.7.3.2 Alternator B Failure –

Alternator B failure is evident by the steady illumination of the Lane B warning light, and a drop in the main bus voltage to nominal battery voltage (+/- 12.5 V).

- 1. Lane B CYCLE SWITCH (OFF 1 SECOND, BACK ON)
- 2. Lane B VERIFY WARNING LIGHT OFF

If Lane B warning light is still on – assume alternator failure.

- 3. ECU Backup..... ON
- 4. EFIS Backup.....ON
- 5. Non-essential Equipment..... OFF^(c) Lights, autopilot, secondary EFIS, etc.
- 6. Radio Communication MINIMAL
- 7. Land AS SOON AS PRACTICABLE

NOTES

c. No battery charging will occur in this scenario, and the main battery must be conserved if there is to be a subsequent alternator B failure.

3.7.3.3 Alternator A and B Dual Failure –

This will result in engine stoppage when the main battery goes flat, since no power is available to the ECU and subsequently the fuel pumps. It must be powered by the main battery in order for the engine to run.

- 1. ECU Backup..... ON
- 2. EFIS Backup..... ON
- 3. Main Battery..... VERIFY VOLTAGE^(d)
- 4. Non-essential Equipment..... OFF Lights, autopilot, secondary EFIS, etc.
- 5. Radio Communication MINIMAL
- 6. Precautionary EXECUTE AS SOON AS POSSIBLE

NOTES

d. Expect **systems failure** when battery voltage drops below **10 Volt**. This includes the ECU and fuel pumps, which will result in engine failure.

WARNING

The engine can run from the main battery for approximately 30 minutes, following a dual alternator A and B failure; from a full charge with all ancillary equipment turned off. The engine will fail due to fuel starvation, as the fuel pumps will stop when the voltage is too low.

3.7.3.4 Loss of Sensors

The engine sensors, for redundancy purposes, are powered by Lane A/B separately. This means that if one of the two lanes fail, a subset of the engine sensors will also fail.

Failure of Lane	Resultant Sensor Failure
	Coolant Temperature
	Exhaust Gas Temperature
А	Ambient Temperature
	Ambient Pressure
	Throttle Level Position
р	Oil Temperature
В	Oil Pressure

3.7.4 Main Bus Power Failure

Please refer to 7.13.4 Main Bus, for a list of equipment affected by a loss of power to the main bus.

- 1. ECU Backup..... ON
- 2. EFIS Backup..... ON
- 3. Land AS SOON AS POSSIBLE

CAUTION

Power loss to the main bus will not result in the main fuel pump stopping but the starter motor will become unavailable/non-operational. If the engine is allowed to run dry and stop, the engine will have to be restarted via airstream driven propeller rotation (windmilling).

4 Normal Procedures

4.1	Introduction	4-1
4.2	Speeds for Normal Operation	4-1
4.3	Preflight Inspection	4-2
4.4	Engine Start and Taxi	4-8
4.5	Before Takeoff	4-11
4.6	Take-off	4-12
4.7	Flight	4-13
4.8	Landing	4-15
4.9	Special Procedures	4-18

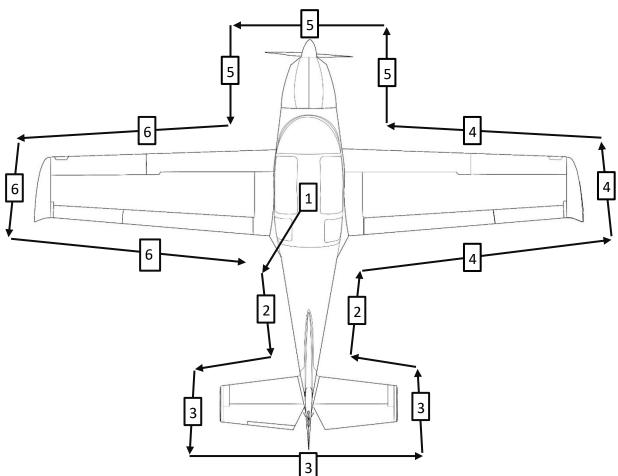
4.1 Introduction

This section provides checklists and recommended procedures for normal operation of the aeroplane.

The checklists proposed are considered to be the most desirable, and checks should follow them, unless there is a valid reason to deviate from them.

4.2 Speeds for Normal Operation

Unless otherwise noted, the following speeds are based on a maximum weight of 600kg (1,320lb).


SPEED		KIAS	REMARKS
Vx	Best Angle of Climb Speed	65	The speed (flaps fully retracted) which results in the greatest altitude gain over a given horizontal distance.
Vy	Best Rate of Climb Speed	72	The speed (flaps fully retracted) which results in the greatest altitude gain over a given time period.
-	Normal Climb Out	75	
V _{ROT}	Rotation Speed	45	The speed at which the aircraft should be rotated about the pitch axis during take-off.
V _{LOF}	Lift-off Speed	48	The speed at which the aircraft generally lifts off from the ground during take-off.
-	Cruise Climb Speed	75 - 90	
-	Approach speed	65 - 75	
V _{REF}	Threshold crossing speed	65	Indicated airspeed at 15 m (50 ft) above threshold, which is not less than 1.3V _{SO} .

4.3 Preflight Inspection

A preflight inspection is required prior to every flight, or first flight of the day. It must also be performed after any incident, accident, maintenance activity etc. Incomplete or careless inspections can result in an accident. Carry out the inspection following the instructions on the Inspection Checklist.

NOTE The word "condition" in the instructions means a visual inspection of surface for damage deformations, scratching, chafing, corrosion, or other damages, which may lead to flight safety degradation.

4.3.1 Inspection Checklist

4.3.1.1 Cabin

Magnetos/Ignition	OFF
Master Switch	ON
Fuel	VERIFY QUANTITY
Flaps	FULL DOWN
Avionics	VERIFY CONDITION
Master Switch	OFF
Controls (all)	CHECK for full, free movement up to stops
Harnesses and Seats	CHECK CONDITION ^(a)
Canopy and Windshield	CHECK CONDITION and cleanliness
Cockpit	CHECK FOR LOOSE OBJECTS and secure
Fire Extinguisher	VERIFY PRESENT / VALID
Documentation	VERIFY PRESENT / VALID ^(b)

NOTES

a	. Check security of buckles and attachment points. Ensure the seat adjustment mechanism is locked correctly after adjustment.
h	Decuments such as surrent DOH ATE DE License (DSA Only)

b. Documents such as current POH, ATF, RF Licence (RSA Only).

4.3.1.2 Fuselage

Surface Condition	CHECK CONDITION
Wing/fuselage Fairing	CHECK
Empennage Fairing	CHECK
Antenna/e	CHECK CONDITION / SECURITY
Luggage Compartment Door	CLOSED / LOCKED
Static Source (If Applicable)	CHECK CONDITION

4.3.1.3 Empennage

Tie-down Rope	REMOVED
Horizontal Stabilizer	CHECK CONDITION
Vertical Stabilizer	CHECK CONDITION
Elevator	CHECK CONDITION / MOVEMENT
Elevator Trim Tab	CHECK CONDITION
Rudder	CHECK CONDITION / MOVEMENT
Hinges, Bolts, Pushrods	CHECK CONDITION / SECURITY
Strobe	CHECK CONDITION

4.3.1.4 Right Wing and Right Main Gear

Wheel FairingCHE	
Wheel and Brakes CHE	CK CONDITION ^(a)
Wheel Struts CHE	CK CONDITION / CRACKS
Chocks REM	IOVE
Flap CHE	CK SECURITY
Flap Hinges, Control Horn, Pushrod CHE	CK CONDITION / SECURITY
Wing Trailing Edge CHE	CK CONDITION
Aileron CHE	CK SECURITY / MOVEMENT
Aileron Hinges, Control Horn, Pushrod CHE	CK CONDITION / SECURITY
Wingtip CHE	CK CONDITION
Nav Light CHE	CK CONDITION
Taxi/Landing Light Lens CHE	CK CONDITION
Wing Leading Edge CHE	CK CONDITION
Fuel Vent (underside of wing) CHE	CK UNOBSTRUCTED
Fuel Quantity CHE	CK THOUGH FILLER

NOTES

_ _ _ _ _ _ _ _ _

a. Fluid Leaks, brake pad and disc condition, tyre condition, tyre inflation (See 4.3.1.7 Tyre Pressure Visual Inspection)

WARNING

Physically verify the fuel level before each take-off. Fuel can be visibly seen, through the filler cap, just covering the (total) bottom of the fuel tank with 30 litres present.

4.3.1.5 Nose Section and Nose Gear

Engine Cowling	. CHECK CONDITION / SECURITY
Propeller and Spinner	. CHECK CONDITION / SECURITY
Air Intakes	. CHECK CONDITION / OBSTRUCTION
Radiators	. CHECK CONDITION
Engine Mount	. CHECK CONDITION / SECURITY
Exhaust Manifold	. CHECK CONDITION
Leaks	. CHECK COWL OUTLETS
Engine Oil	. CHECK LEVEL WITH DIPSTICK
Coolant	. CHECK LEVEL ^(a)
Parachute	. CHECK COVER SECURITY
Nose Wheel	. CHECK CONDITION
Chocks	. REMOVE

NOTES

a. DO NOT fill the coolant level to the max mark on the overflow bottle mounted to the firewall. Its best practice to have the fluid level just above the min mark when cold. If there is any doubt about fill level, remove the radiator cap (only when cold) to verify fluid presence.

CAUTION

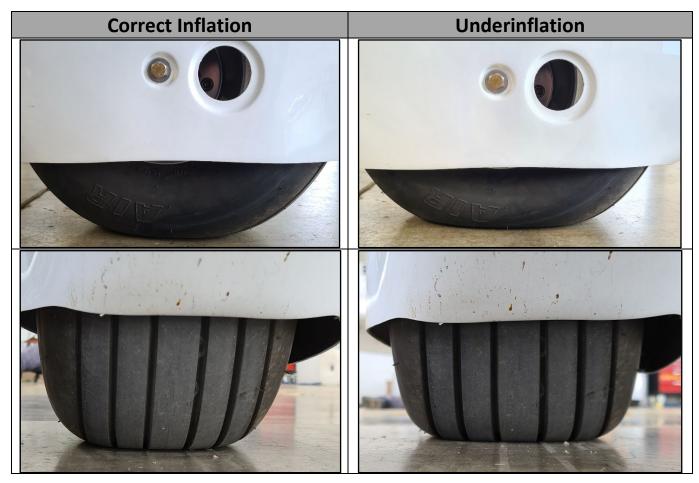
During the pull-through, <u>make sure the ignition/magnetos are OFF</u>. Always handle the propeller blade area with the palm of your hand, and not only the tips of your fingers.

4.3.1.6 Left Wing

Fuel Quantity Fuel Vent (underside of wing) Wing Leading Edge Taxi/Landing Light Lens Wingtip Nav Light Aileron Aileron Hinges, Control Horn, Pushrod Wing Trailing Edge Flap Flap Hinges, Control Horn, Pushrod Wheel Fairing Wheel and Brakes	CHECK UNOBSTRUCTED CHECK CONDITION CHECK CONDITION CHECK CONDITION CHECK CONDITION CHECK SECURITY / MOVEMENT CHECK CONDITION / SECURITY CHECK CONDITION CHECK CONDITION / SECURITY CHECK CONDITION / SECURITY CHECK CONDITION / SECURITY CHECK CONDITION / SECURITY
Wheel and Brakes Wheel Struts Chocks	. CHECK CONDITION / CRACKS

NOTES

a. Fluid Leaks, brake pad and disc condition, tyre condition, tyre inflation (See 4.3.1.7 Tyre Pressure Visual Inspection)


WARNING

Physically verify the fuel level before each take-off. Fuel can be visibly seen, through the filler cap, just covering the (total) bottom of the fuel tank with 30 litres present.

4.3.1.7 Tyre Pressure Visual Inspection

The tyres must be visually inspected prior to every flight. It is not necessary to check the pressure of the tyre with a gauge; it is sufficient to visually inspect the tyre.

NOTE

Pay specific attention to the following, in order to decern satisfactory inflation:

- Outmost trendlines
- Sidewall deflection

4.4 Engine Start and Taxi

4.4.1 Before Engine Start

- 1. Preflight Inspection COMPLETE
- 2. Emergency Equipment..... ON BOARD
- 3. Passenger Briefing COMPLETE
- 4. Seats CORRECTLY ADJUSTED
- 5. Harnesses SECURE
- 6. Park Brake ON
- 7. Circuit Breakers IN

4.4.2 Engine Start

Alternative checklist for aircraft equipped with a Rotax 912 ULS.

1. Fuel Selector...... EMPTIEST TANK (IF NOT EMPTY) 2. EFIS Backup Switch ON (VERIFY BATTERY VOLTAGE) 3. EFIS Main Switch ON ECU Backup Switch ON 4. 5. Master Switch ON Ignition / Lanes...... ON (BOTH) 6. Auxiliary Fuel Pump...... ON (FUEL PRESSURE/ABNORMAL SOUND) 7. OFF (AFTER 5 SECONDS) 8. Main Fuel Pump ON (FUEL PRESSURE/ ABNORMAL SOUND) ECU Backup Switch OFF 9. 11. Propeller..... AREA CLEAR 12. Starter ENGAGE (MAX. 10 SECONDS) 13. Oil Pressure CHECK (CORRECT WITHIN 10 SECONDS) 14. Throttle+/- 2500 RPM 15. Ignition / Lane Lights VERIFY OFF 16. Alternator B..... CHECK ONLINE (a) 17. Avionics Switch.....ON 18. Oil Temperature 2500 RPM until oil temperatureis < 50 °C (122 °F) ^(b)

NOTE

- a. Main bus voltage should move up from +/- 12.5V to above 13V when the engine RPM is held above/at 2500 RPM for more than 5 seconds. This is the indication that Alternator B has been brought online by the ECU.
- b. When the oil is below 50 °C, the oil filter is bypassed due to the increased viscosity of the oil. Significant throttle settings must not be used during this period, as it may cause damage.

CAUTION

- The starter can be activated for a maximum of 10 seconds, followed by a 2-minute pause, to allow the starter to cool.
- Only increase engine speed 10 seconds after start, if the oil pressure is steady above 2 bar (29psi).
- To avoid shock loading, start the engine with the throttle to approximately 10%. Wait 3 seconds after start for the engine rpm to stabilize, then increase.

4.4.3 Taxi

1.	Flaps	UP
2.	Brakes	OFF
3.	Control	INTO WIND OR NEUTRAL
4.	Power	AS REQUIRED
5.	Brakes	VERIFY OPERATION AT START OF
		ΤΑΧΙ

Document Number: DC-POH-002-X-A-6 Revision: 3.0

4.5 Before Takeoff

To be conducted at a holding point or equivalent –

4.5.1 Run Up & Pre-Takeoff

Alternative for aircraft equipped with a Rotax 912 ULS.

1.	Face into wind IF POSSIBLE
2.	Oil Temperature ABOVE 50°C
3.	Fuel Selector FULLEST TANK
4.	Engine 4000 RPM
5.	Lane A OFF (2 sec., NO MORE THAN 180 RPM DROP)
	ON (WAIT FOR LANE A LIGHT OFF)
6.	Lane B OFF (2 SEC., NO MORE THAN 180 RPM DROP)
	ON (WAIT FOR LANE B LIGHT OFF)
7.	Fuel Pumps AUX OFF
	MAIN ON
8.	Fuel Pressure CHECK (CORRECT AND STABLE)
9.	Fuel Pumps AUX ON
	MAIN OFF
10.	Fuel Pressure CHECK (CORRECT AND STABLE)
11.	Fuel Pumps BOTH ON
12.	Engine 2500 RPM
13.	Fuel Quantity VERIFY (SUFFICIENT FOR PLANNED FLIGHT)
14.	Circuit Breakers ALL IN
15.	Switches CHECK AND SET AS REQUIRED
16.	Instruments CHECK AND SET ALL
17.	Controls FREE & FULL / CORRECT SENSE
18.	Trim SET NEUTRAL
19.	Flaps SET STAGE 1 / TAKEOFF
20.	Engine Parameters VERIFY (TEMPERATURES, PRESSURES, VOLTAGES)
21.	Canopy CLOSED / LATCHED
22.	Harness SECURE (CORRECTLY FASTENED AND TIGHT)
23.	Brief Passengers BRIEF

4.6 Take-off

- 1. Throttle FULL OPEN
- 2. Engine Speed VERIFY GREATER THAN 5200 RPM
- 3. Elevator Control NEUTRAL
- 4. Engine Parameters VERIFY (pressures, temperatures)
- 5. Rotate..... 45 KIAS
- 6. Airspeed 72 KIAS (V_y)
- 7. Brakes..... APPLY TO STOP WHEEL SPIN
- 8. Flaps UP (MIN .65 KIAS / MIN. ALT. 300FT)
- 9. Trim AS REQUIRED
- 10. Power AS REQUIRED
- 11. Climb COMMENCE

WARNING

Take-off is prohibited if:

- The engine is running rough or intermittently.
- The engine parameters (instrument indications) are outside operational limits.
- The crosswind component exceeds permitted limits (15 knots).

CAUTION

Ensure that engine oil temperature is above 50 °C prior to take off.

Climbing with engine at 5800 rpm is permissible for 5 minutes. Thereafter, a maximum continuous engine rpm of 5500 rpm applies.

4.7 Flight

4.7.1 Climb

- 1. Throttle GREATER THAN 5200 RPM
- 2. Airspeed V_x 65 KIAS
 - V_Y 72 KIAS
 - CRUISE 75 90 KIAS
- 3. Trim AS REQUIRED
- 4. Engine Parameters VERIFY (pressures, TEMPERATURES)

CAUTION

If the cylinder head temperature or oil temperature approach their limits, reduce the climb angle to increase airspeed and thus fulfil the limits.

NOTE

It is best practice to limit using the full 5800 RPM to only when its necessary i.e. takeoff, emergency climbing.

4.7.2 Cruise

- 1. Airspeed 105 118 KIAS
- 2. AUX Fuel Pump..... OFF
- 3. Throttle AS REQUIRED
- 4. Trim..... AS REQUIRED
- 5. Fuel..... SWITCH EVERY HOUR
 - (AUX PUMP ON DURING SWITCH)

4.7.3 Decent

2.	ATIS / Weather Altimeter Fuel Selector	. SET
5.		(AUX PUMP ON DURING SWITCH)
4.	Lights	. AS REQUIRED
5.	Seatbelts	. CHECKED
6.	Approach Brief	. COMPLETE
7.	Throttle	. AS REQUIRED
8.	Trim	. AS REQUIRED

4.8 Landing

4.8.1 Before Landing

- 1. Brakes..... CHECK PARK BRAKE IS OFF
- 2. Fuel Pumps..... BOTH ON
- 3. Airspeed 75 KIAS
- 4. Flaps 1 STAGE ON DOWNWIND
 - 2 STAGE ON BASE
- 5. Trim AS NEEDED
- 6. Harnesses SECURE
- 7. Landing Light ON

4.8.2 Approach

- 1. Airspeed 70 75 KIAS
- 2. Flaps FULL ON FINAL
- 3. Trim..... AS REQUIRED
- 4. Throttle AS REQUIRED^(a) (NOT BELOW 3000 RPM)

WARNING

The fuel tank pickup point is situated at the bottom of the inboard wall. In normal operation, the dihedral of the wing ensures fuel is always present at the pickup. The aircraft should never be subjected to a sustained side slip towards a near empty fuel tank that is being drawn from. This may expose the pickup point to air, thereby starving the engine and leading to engine stoppage. This is particularly dangerous at low altitudes during an approach.

4.8.3 Normal Landing

- 1. Airspeed @50 ft 65 KIAS
- 2. Power IDLE IN GROUND EFFECT
- 3. Flare TO MINIMUM FLIGHT SPEED
- 4. Touchdown MAINS FIRST (HOLD NOSE WHEEL OFF)
- 5. Brakes..... APPLY AS NEEDED

4.8.4 After Landing (Clear of Runway)

1.	Flaps	UP
	Auxiliary Fuel Pump	
3.	Landing Light	OFF
4.	Transponder	SET

4.8.5 Engine Shutdown

1.	Engine Speed	IDLE
2.	Park Brake	SET
3.	Engine Parameters	.WITHIN LIMITS
4.	Lane B	OFF
5.	Lane A	OFF
6.	Main Fuel Pump	OFF
7.	EFIS	OFF
8.	Master	OFF
9.	All Switches	OFF
10.	Fuel Selector	OFF

NOTES

At least 5 minutes must pass between landing and shutting off the engine. If the ambient temperature is excessively warm, and causes the coolant temperature to rise, then engine may be shut down prior to the 5-minute mark.

CAUTION

Rapid engine cooling should be avoided during operation. This happens especially during decent and taxi i.e. Low engine RPM scenarios. Under normal conditions, the engine temperatures stabilize during decent and taxi at suitable values to stop the engine. If temperatures are unstable (high or low), run the engine at +/- 3000 RPM for a minimum of 2 minutes to stabilize the temperatures prior to shut down.

4.9 Special Procedures

4.9.1 Baulked / Rejected Landing

- 1. Throttle FULL / 5800 RPM
- - UP @ 65 KIAS, min. 300ft.
- 3. Auxiliary Fuel Pump...... OFF
- 4. Trim AS NECESSARY
- 5. Complete circuit for new approach

4.9.2 Short Field Takeoff

Runway Length...... MEASURED^(a) (WITHIN AIRCRAFT CAPABILITY) 1. 2. Abort Point MARKED Aircraft Weight MINIMISE 3. Runway Position MAXIMUM POSSIBLE LENGTH AHEAD 4. 5. Elevator and Trim NEUTRAL 6. Flaps STAGE 2 7. Park Brake SET FULL Engine Parameters VERIFY (PRESSURES, TEMPERATURES) 8. 9 Throttle FULL OPEN 10. Park Brake RELEASE 11. Rotate...... 45 KIAS 12. Abort IF NOT AIRBORNE BY ABORT POINT 13. Climb BEST ANGLE ($V_X - 65$ KIAS) _____

NOTES

a. Calculate Density Altitude before takeoff.

4.9.3 Short Field Landing

- 1. Approach FLAT / UNDER POWER
- 2. Throttle AS REQUIRED
- 3. Approach Airspeed 65 KIAS^(a)
- 4. Throttle IDLE
- 5. Flare COMMENCE
- 6. Touch down..... MAINS FIRST
- 7. Braking HEAVY If runway overrun is possible –
- 8. Ignition Lanes OFF (MINIMISE PROPELLER/GEARBOX DAMAGE)

NOTES

_ _ _ _ _ _ _ _ _ _ _ _ _ _

a. Exercise caution approaching at low speeds as the effects of a wind gust will be amplified.

4.9.4 Soft Field Landing

1.	Crew	SECURE

- 2. Flaps FULL
- 3. Approach FLAT UNDER POWER
- 4. Approach Speed NORMAL (70 KIAS)
- 5. Flare ABOVE THRESHOLD
- 6. Power IDLE
- 7. Hold Off IN GROUND EFFECT (0.5M / 2FT. ABOVE RUNWAY)
- 8. Speed 55 KIAS
- 9. Main Wheels TOUCH BEFORE STALL
- 10. Nose Wheel HOLD OFF WITH FULL ELEVATOR

4.9.5 Soft Field Takeoff

- 1. Aircraft Weight MINIMISE
- 2. Elevator Trim NEUTRAL
- 3. Flaps STAGE 2
- 4. Parking Brake SET FULL
- 5. Engine Parameters VERIFY (PRESSURES, TEMPERATURES)
- 6. Throttle FULL OPEN
- 7. Parking Brake RELEASE
- 8. Elevator FULL BACK (UNTIL NOSE WHEEL JUST LIFTS)
- 9. Rotate..... 45 KIAS

Sling LSA Pilot Operating Handbook

4.9.6 Crosswind Takeoff

- 1. Pre-Takeoff Checks..... NORMAL
- 2. Aileron..... FULL INTO WIND
- 3. Take-off Procedure..... NORMAL
- 4. Aileron..... REDUCE INPUT AS REQUIRED^(a)

NOTES

a. As the aircraft accelerates, the pilot must reduce aileron input to avoid the wing hitting the ground. Only a slight roll angle into the wind is normally required to keep the aircraft tracking true.

4.9.7 Crosswind Landing

- 1. Approach Procedure NORMAL
- 2. Approach UNDER POWER
- 3. Final Approach LONG
- 4. Rudder..... INTO CROSSWIND
- 5. Flare OVER THRESHOLD
- 6. Wing Roll LEVEL
- 7. Rudder..... APPLY OPPOSITE
- 8. Direction..... ALIGN WITH RUNWAY
- 9. Main Gear TOUCH DOWN
- 10. Nose Wheel HOLD OFF
- 11. Brakes..... APPLY (ONCE NOSE WHEEL ON THE GROUND)

5 Performance

5.1	Introduction	. 5-1
5.2	Takeoff and Landing Distance	. 5-1
5.3	Rate of Climb	. 5-2
5.4	Cruise Speeds	. 5-3
5.5	Fuel Consumption	. 5-4
5.6	Airspeed Indicator System Calibration	. 5-5

5.1 Introduction

The data presented in this section has been deduced from flight tests with the aircraft and engine in good condition, and using average piloting techniques.

If not otherwise stated, the performance in this section is valid for:

- Maximum takeoff weight of 600 kg (1,320lb).
- ISA conditions.
- Rotax 912 iS @ 73. 5kW (100 hp)
- Warp Drive Composite Propeller
 - Three Blade, Fixed Pitch, 72" Diameter

5.2 Takeoff and Landing Distance

5.2.1 Takeoff Distances

Surface Type Run Distance		Distance over 15m / 15ft Obstacle			
Concrete/Tar	120 m / 395 ft	230 m / 755 ft			
Grass	140 m / 460 ft	250 m / 820 ft			

5.2.2 Landing Distance

Surface Type	Landing Distance with braking	Distance over 15m / 15ft Obstacle
Concrete/Tar	80 m / 265 ft	250 m / 820 ft
Grass	80 m / 265 ft	250 m / 820 ft

5.3 Rate of Climb

Values relevant for maximum continuous power of 5500 RPM -

Altitude	Best Rate of Climb Speed (V _{IE})	Rate of Climb	
[ft. ISA]	[KIAS]	[fpm]	
0		800	
3 000	72	600	
6 000		500	
9 000		400	

5.4 Cruise Speeds

Reminder: The propeller used for the values below is fixed pitch -

Altitude	Engine Speed	KIAS	KTAS
[ft ISA]	[rpm]	[kt.]	[kt.]
	4 500	81	82
	4 800	95	96
100	5 000	101	102
	5 300	106	108
	5 500	112	114
	4 500	72	76
	4 800	87	91
3 000	5 000	98	104
	5 300	104	109
	5 500	108	114
	4 500	65	73
	4 800	80	89
6 000	5 000	90	100
	5 300	98	108
	5 500	101	115
	4 500	63	73
	4 800	74	88
9 000	5 000	87	99
	5 300	91	105
	5 500	94	108

Sling LSA Pilot Operating Handbook

Section 5 Performance

5.5 Fuel Consumption

Altitude	[ft ISA]	3 000				
	[Litres]	150				
Fuel Quantity	[US	20.0				
	Gallons]	39.6				
Engine Speed	[rpm]	4 500	4 800	5 000	5 300	5 500
Fuel	[L/hr]	14	16	18	20	21
Consumption	[US gal./hr]	3.7	4.2	4.8	5.3	5.6
Airspeed	[KIAS]	73	91	104	109	114
Endurance	[hh:mm]	10:40	9:20	8:20	7:30	7:10
Range	[nm]	781	853	866	817	815

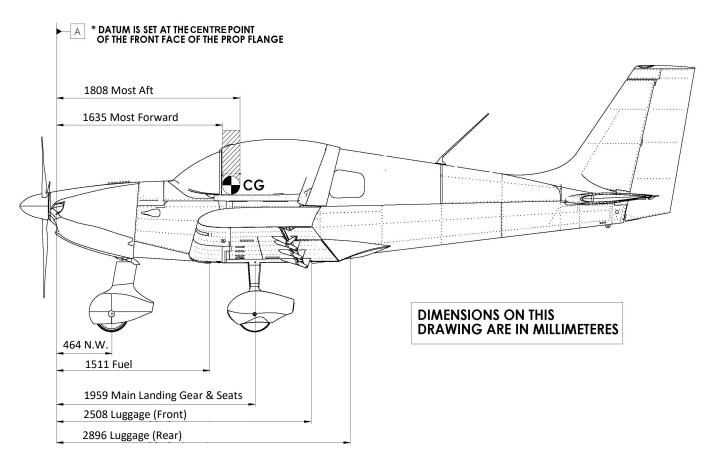
5.6 Airspeed Indicator System Calibration

IAS [knots]	CAS [knots] (average)	CAS [knots] (this aircraft)
25	28	
30	33	
35	38	
40	44	
45	45	
50	50	
55	55	
60	60	
65	65	
70	70	
75	75	
80	80	
85	85	
90	90	
95	95	
100	100	
105	105	
110	110	
115	115	
120	120	
125	125	
130	130	
135	135	

6 Weight and Balance

6.1	Introduction 6-	·1
6.2	Installed Equipment List6-	·1
6.3	Centre of Gravity Arms6-	·2
6.4	CG Envelope6-	.3
6.5	Determination of CG6-	4
6.6	Determination of Empty CG6-	·6
6.7	Blank CG Form and Graph for Use6-	.7

6.1 Introduction

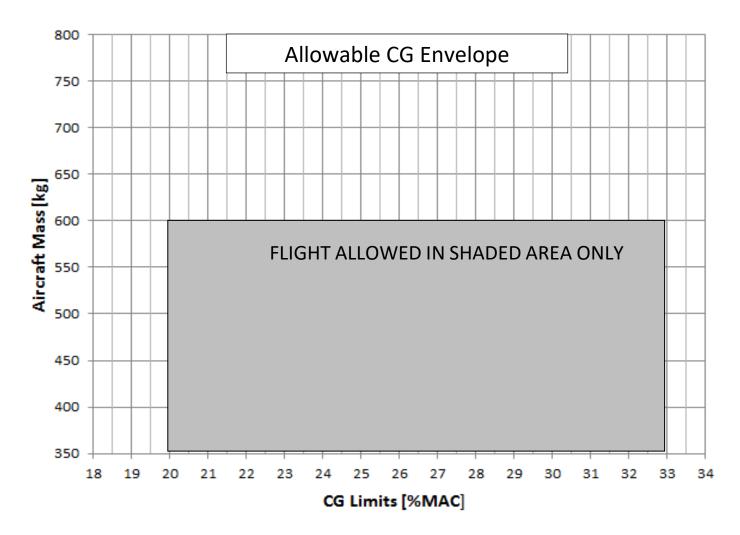

This section details weight and balance information, along with payload ranges for safe operation of the aircraft.

6.2 Installed Equipment List

Туре	Equipment Item
	Garmin G3X (GDU460) Glass Cockpit
	Garmin GTX35 Transponder
	Garmin GTR200 Radio
Standard	3Ah IBBS Backup Battery
	Electric Flap Controller
	Electric Elevator Trim System
	Magnetic Compass
	Garmin G5 Certified Electronic Flight Instrument
	Garmin GMA245R Audio System
Optional	Garmin GMC507 Auto Pilot
	Heated Pitot
	ELT

6.3 Centre of Gravity Arms

WARNING


Aircraft CG and MAUW limitations must be adhered to at all times.

NOTE

- GC range is 1 635mm (5.364 ft) to 1 808 mm (5.931 ft) aft of the reference datum (20 to 33% of MAC).
- The leading edge of the wing at MAC is 1 366 mm (4.482 ft) aft of the reference datum.
- The MAC is 1 339 mm (4.393 ft).

6.4 CG Envelope

6.5 Determination of CG

Sling Aircraft makes use of a numerical method in calculating the Cg of the aircraft. The following will be required to complete a CG check:

#	ltem	
1	Empty CG Value	
2	Blank CG Form	
3	Forward CG	
	Check	
4	Rear CG Check	

The principal formula for CG calculation is:

 $CG = \frac{Total \ Moment}{Total \ Weight}$

The %MAC formulas are:

$$\% MAC = (CG - 1366m) \times \frac{100}{1339mm}$$

or,

 $\% MAC = (CG - 4.482 ft.) \times \frac{100}{4.393 ft.}$

WARNING

For each flight, the most forward CG (full take-off fuel) and the most rearward CG (landing fuel) must be calculated to be within aircraft CG range limits.

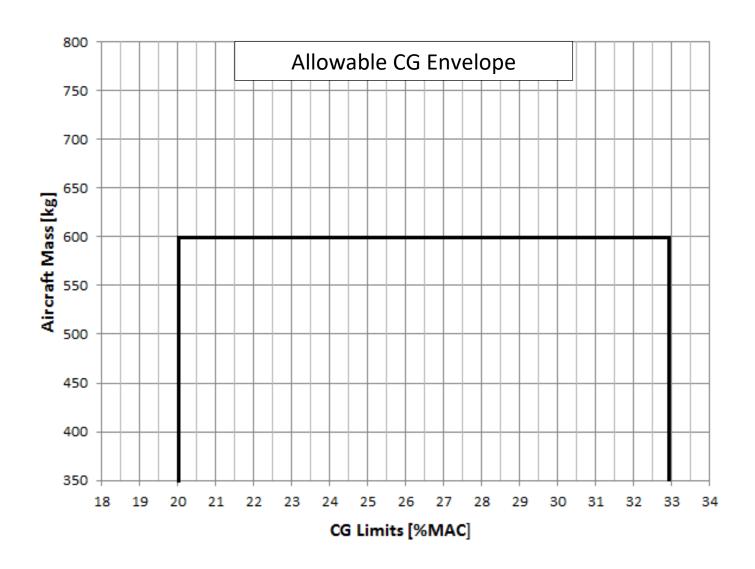
The aircrafts empty CG is determined in a conventional manner, by weighing the aircraft whilst it is standing level. Refer to the Maintenance Manual for more.

Maximum all up weight (MAUW) = 600kg (1,320lb)

Maximum useful load (example) -

 $W_{max,useful} = W_{MAUW} - W_E$ = 600kg (1,320lb) - 370kg (816lb) = 230kg (507lb)

6.6 Determination of Empty CG


	ITEM	WEIGHT	ARM	MOMENT
		[kg (lb)]	[mm (ft)]	(weight x arm)
				[kg.mm (lb.ft)]
	Right Main Wheel	W _R =	L _R = 1 959 (6.427)	
Aircraft Empty CG	Left Main Wheel	W _L =	L∟ = 1 959 (6.427)	
Emp	Nose Wheel	W _N =	L _N = 464 (1.522)	
craft	Totals	Empty weight:	_	Aircraft moment:
Air	101013	W _E =		M ₀ =
	Final CG	CG = m	m (ft)	

6.7 Blank CG Form and Graph for Use

			MOMENT
WEIGHT ARM		(weight x arm)	
	[kg (lb)]	[mm (ft)]	[kg.mm (lb.ft)]
Pilot & Passenger		1 959 (6.427)	
Baggage (Front)		2 508 (8.228)	
Baggage		2 896 (9.501)	
(Rear)			
Fuel		1 511 (4.957)	
Cg Empty Value			
TOTALS	W _T =	-	M _T =
			CG = mm
			CG = %MAC

7 Aircraft and Systems

7.1	Airframe7-1
7.2	Control System / Pilot Controls
7.3	Landing Gear7-8
7.4	Safety Harness and Seats 7-8
7.5	Baggage Compartment7-9
7.6	Canopy
7.7	Pitot and Static Systems
7.8	Cockpit Layout 7-11
7.9	Instruments and Avionics7-13
7.10	Minimum Instruments and Equipment Required for Flight 7-16
7.10 7.11	Minimum Instruments and Equipment Required for Flight 7-16 Engine
-	
7.11	Engine
7.11 7.12	Engine
7.117.127.13	Engine
7.117.127.137.14	Engine
 7.11 7.12 7.13 7.14 7.15 	Engine

7.1 Airframe

The Sling LSA has an all-metal construction with single curvature stressed aluminium alloy skins riveted to stiffeners. Construction is of 6061-T6 aluminium alloy sheet metal riveted to angles, of the same material, with high quality blind rivets. This high strength aluminium alloy construction provided long life and low maintenance costs, thanks to its durability and corrosion resistance characteristics. The wing has a high lift airfoil (NACA 4415) and is equipped with semi-slotted fowler type flaps.

7.2 Control System / Pilot Controls

7.2.1 Control Column(s)

The aircraft is equipped with dual control sticks, which manipulate two of the three control axes: pitch (elevator) and roll (aileron). The stick has the following button allocations:

Button	Function
1	Trim down
2	Autopilot control
3	Trim up
4	Not allocated
5	Radio PTT

7.2.2 Rudder Pedals

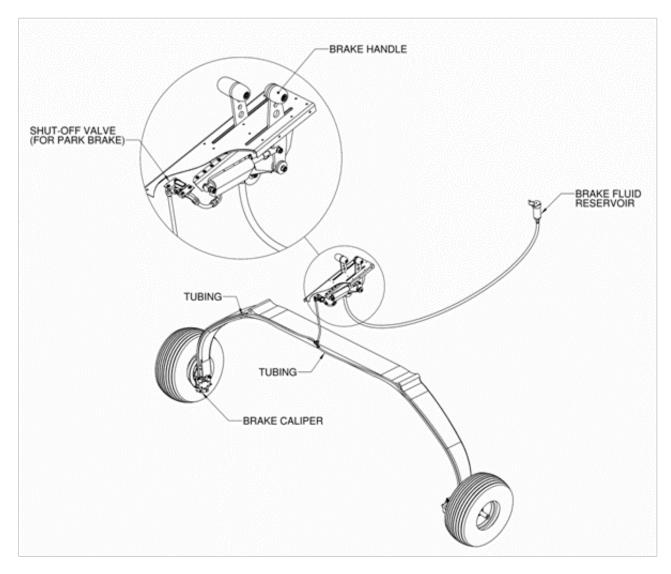
The aircraft is fitted with dual rudder pedals, which control the rudder and the nose wheel, for yaw control in flight directional control while on the ground.

7.2.3 Brake Controls

7.2.3.1 Brake Lever –

The braking system is typically a single hydraulic master cylinder acting on both wheels of the main landing gear, through a disk/calliper arrangement. Activation of the brakes is via the lever located on the cabins centre console.

7.2.3.2 Toe Brakes –


A differential foot-controller braking system may also be fitted as an option. In such case, each brake calliper is separately actuated by way of two master brake cylinders fitted to each pedal: with the right pedal actuating the right calliper, and left pedal the left calliper.

7.2.3.3 Park Brake –

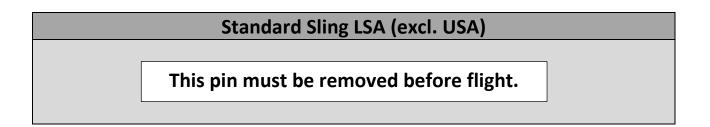
The park brake is typically an intercept valve, which stops pressure relief when pressure is removed from the brake lever/toe brakes. For normal braking operation, the intercept valve must be off.

7.2.4 Throttle Lever

The aircraft makes use of a single lever power system, as the propeller is normally only ground-adjustable and mixture is controlled by the ECU.

Refer to 7.8 Cockpit Layout.

7.2.5 Fuel Selector Valve


Fuel tank feed selection is enabled by a red coloured, three-position (LEFT, RIGHT, OFF) rotary selector valve, located at the bottom centre of the instrument panel / front of centre console. Refer to in 7.8 Cockpit Layout, for the location of the selector.

An additional knob must be activated to move the selector, through a detent, to the OFF position. This prevents accidental closure of the valve (OFF position).

7.2.6 Ballistic parachute (if fitted)

The red coloured activation lever is located at the bottom centre of the instrument panel.

The accidental operation of the lever is prevented by a locking pin, which is tagged with a red flag.

7.2.7 Electrical equipment / control switches

See appendix for alternative information for the 912 ULS.

SWITCH / LABEL	FUNCTION	POSITION
MASTER /	Power disconnected from main bus.	OFF
STARTER KEY	Main bus connected to power.	ON
SWITCH	Engage starter motor.	START
EFIS	Switch power (main bus) to EFIS system on/off.	
EFIS BKUP	Connects EFIS to EFIS back-up battery.	
MAIN PUMP	Switch main fuel pump on/off.	
AUX PUMP	Switch auxiliary fuel pump on/off.	
LAND	Switch landing lights on/off.	
ΤΑΧΙ	Switch taxi lights on/off.	UP
NAV	Select position (navigation) lights.	ON
STROBE	Select anti-collision (strobe) lights.	
AVIONICS Switch power to radio and transponder on/off.		DOWN OFF
	Connects the EMS / ECU to the main battery	UFF
ECU BKUP	(to provide back-up power).	
AUTOPILOT	Switch power to autopilot servos on/off.	
MASTER	Switch power to main bus on/off.	
LANE A	Select Lane A magneto/ignition source.	
LANE B Select Lane A magneto/ignition source.		

7.2.8 EFIS

The EFIS selection and control mechanism is described in detailed in the EFIS manufacturer documentation. Please refer to this documentation. Refer to 7.9.1 EFIS System for more detailed information.

7.2.9 Elevator Trim

Elevator trim is electrically controlled by buttons on the control column, and these buttons are detailed in 7.2.1 Control Column(s).

The trim motor is located in the left elevator (if facing forward) and drives the trim tab. Pilot controls are via buttons on the control column, as detailed in 7.2.1 Control Column(s). The trim servo is powered by the main bus, though a circuit breaker.

7.2.10 Flap Control

Wing flaps are electrically controlled by a four-position rotary knob or a four-pushbutton sector located on the instrument panel. Each selector position corresponds to the following flap deflection:

Selector position	Degrees flap deflection
0	0°
1	10°
2	20°
3	32°

The flap system makes use of an interconnected torque tube, with a servo in the cabin centre console. Bar a linkage failure, this prevents the flaps being deployed in an unsymmetrical manner.

The flap controller is powered from the main bus, via a circuit breaker.

CAUTION

If power on the main bus fails, the flap and trim system becomes defunct.

7.2.11 Cabin Heat

Heated air, warmed by the heat exchanger with the engine exhaust, can be selected via a selection knob located on the instrument panel. The system can be activated by pulling out the knob.

7.3 Landing Gear

The landing gear is a tricycle landing gear with a steerable nose wheel, regardless of braking architecture. The main landing gear uses a single continuous composite spring section.

7.4 Safety Harness and Seats

The aircraft features side-by-side seating. Four-point safety belts are provided for each seat. Seats can be adjusted forwards and backwards, with forward movement also leading to the seat being elevated.

CAUTION

Ensure that the seat(s) is securely locked into position after adjustment.

NOTE

Prior to each flight, ensure that the seat belts are firmly secured to the airframe, and that the belts are not damaged. Adjust the buckle so that it assumes a central position relative to the body.

7.5 Baggage Compartment

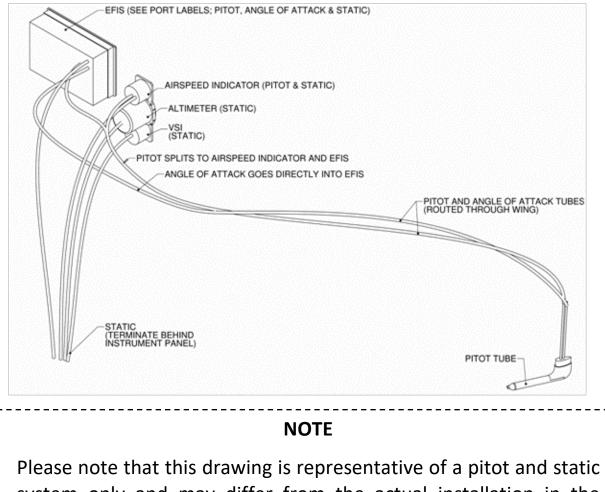
The baggage compartment comprises of two sections positioned behind the seats and is designed to carry up to 15kg (33lb) in total. There is a narrow and slightly narrowed front section, and a higher, larger back section. Subject to the weight limitation, luggage may be loaded into the front or back section. *It is the pilot's obligation to ensure that the aircraft CG is within the permissible limits and that all baggage must be properly secured*.

7.6 Canopy

The aircraft is equipped with a sliding canopy mechanism. External access to the cabin is form either side. Latching mechanisms are provided inside and outside of the top roll-over bar, in the centre.

WARNING

Ensure that the canopy/mechanism is securely latched into position before operating the aircraft.

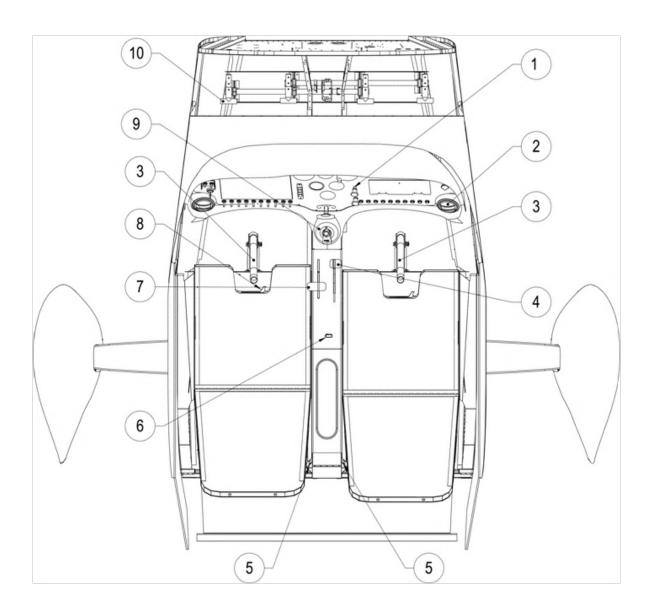


7.7 Pitot and Static Systems

A pitot tube is located below the left wing, and the relevant pressures, experienced by the pitot, are transferred to the instrument through flexible hoses. The pitot features a second hole for the measurement of angle of attack. The static port is located behind the instrument panel. Keep the pitot head clean to ensure proper functioning of the system.

Ensure that the pitot tube cover is removed prior to every flight and that it is replaced after every flight.

An example of a pitot static system is below:



Please note that this drawing is representative of a pitot and static system only and may differ from the actual installation in the aircraft. For example, placement of instruments and actual instruments installed.

7.8 Cockpit Layout

The basic cockpit layout is the same for all Sling LSA aircraft, notwithstanding that instrumentation may differ substantially. All airplanes contain the minimum instrumentation, but particular airplanes may contain substantial additional instrumentation. The basic cockpit layout is configured as in the diagram, with key, below:

Sling LSA

Pilot Operating Handbook

	Cockpit Layout Key			
1	Instrument panel			
2	Air vent			
3	Control Stick (With PTT, Trim, AP Control)			
4	Brake actuator (if footbrake not fitted)			
5	Headset plugin sockets			
6	Park-brake actuator valve			
7	Throttle			
8	Seat adjustment lever			
9	Fuel selector valve			
10	Rudder pedals (with brakes if footbrakes are fitted)			
11	Ballistic parachute operating lever			
12	Fire extinguisher			

NOTE

If differential footbrakes are fitted, the hand operated actuator on the centre console will be absent.

Seats and pedals are adjustable. There is a unlocking leaver that allows the movement of the seat, and a locking/setting bolt that allows movement of the pedals.

A fire-extinguisher is held in place against the front retaining wall of the baggage space.

An adjustable red interior light is positioned behind and between the pilot and passengers' heads.

7.9 Instruments and Avionics

The diagram below represents an instrument panel containing the required minimum instrumentation, together with typical back-up and additional instrumentation supplied with the aircraft. The instrument panel in any particular aircraft may differ from that illustrated below, as choice of instruments and layout is decided by the customer. It is the responsibility of the pilot to ensure that they are familiar with the instrumentation in the aircraft, its layout and operation.

7.9.1 EFIS System

The Garmin G3X multifunction "Glass Cockpit" instrument is the standard EFIS used by Sling Aircraft. This instrument incorporates a range of different instruments and functions. The full instrumentation provided by the EFIS will typically include, but not limited to:

Feature	Comment		
Speeds	 ASI, IAS and TAS 		
	 Ground Speed 		
Altitude	• ALT		
	 Height Above Ground (Dependent on loaded maps) 		
VSI	 Vertical Speed Indicator 		
Compass	-		
Attitude Indicator	-		
Turn Coordinator	-		
G-Meter	-		
Time	 Clock and Stopwatch 		
	 Flight Time Recorder 		
Autopilot	 If servos are fitted 		
GPS Navigation	 Comprehensive mapping and navigation 		
	software and data, including GPS and GLS		
	(GPS Landing System)		
Engine Monitoring	RPM Indicator		
	 CHT and EGT Indicators 		
	 Coolant Temperature 		
	 Oil Temperature and Pressure indicators 		
	 Fuel Level, Flow and Pressure Indicators 		
	 Hobbs and Flight Time Recorder 		
	Voltmeter		

The EFIS installed can be powered from two separate systems:

- Main Bus
 - Through the main EFIS switch, labelled "EFIS"
- Back-up Battery
 - Through the selection switch, labelled "EFIS BKUP"
 - It is recommended that BOTH the main and the back-up switches are kept on during operation of the aircraft. This will ensure that, if there is a power failure on the main bus, the EFIS will automatically change over to the battery.
- Note Use and set-up of the EFIS and its features extensively described in documentation supplied with the unit, and will not be dealt with in this handbook.

The autopilot functionality is incorporated in the EFIS.

WARNING

Users should desist from entering the EFIS setup pages during flight as changes to the setup may result in incorrect readings and/or warnings resulting in safety degradation.

7.10 Minimum Instruments and Equipment Required for Flight

The following minimum instrumentation and equipment is required for day VFR flight:

#	Item
1	Altimeter
2	Airspeed Indicator
3	Compass
4	Fuel Gauges
5	Oil Pressure Indicator
6	Oil Temperature Indicator
7	Cylinder Head Temperature Indicator
8	Outside Air Temperature Indicator
9	Tachometer
10	Chronometer
11	First Aid Kit (Compliant with Local Regulations – not required in US)
12	Fire Extinguisher

WARNING

Installed equipment may include GPS and other advanced flight and navigational aids. Such equipment may not be used as the sole information source, for purposes of navigation or flight, except where specifically permitted by law. The aircraft instrumentation is not certified, and applicable regulations should be complied with at all times.

7.11 Engine

The engine fitted, as standard, is the Rotax 912 iS. This engine is a 4stroke, 4-cylinder, horizontally opposed, spark ignition engine, with one central camshaft -pushrod OHV and a displacement of 1211cc (1.2L/74 cubic inch). The engine makes use of liquid cooled cylinder heads with air cooled cylinders. The lubrication system can be described as sump forced lubrication and the ignition makes use of dual contactless capacitor discharge magneto type ignition system, that is ECU controlled. The engine is fitted with an electric starter motor, two AC alternators and two electric fuel pumps. The propeller is driven through a reduction gearbox, of ratio 2.43, and features an integrated shock absorber. The engine will continue to run after an alternator/battery failure. Please see 3.7.3 Alternator / Charge System Failure for more.

Please refer to the *latest revision* of the manufacturer documentation (Operators Manual / Maintenance Manual) for more information.

7.12 Cooling System

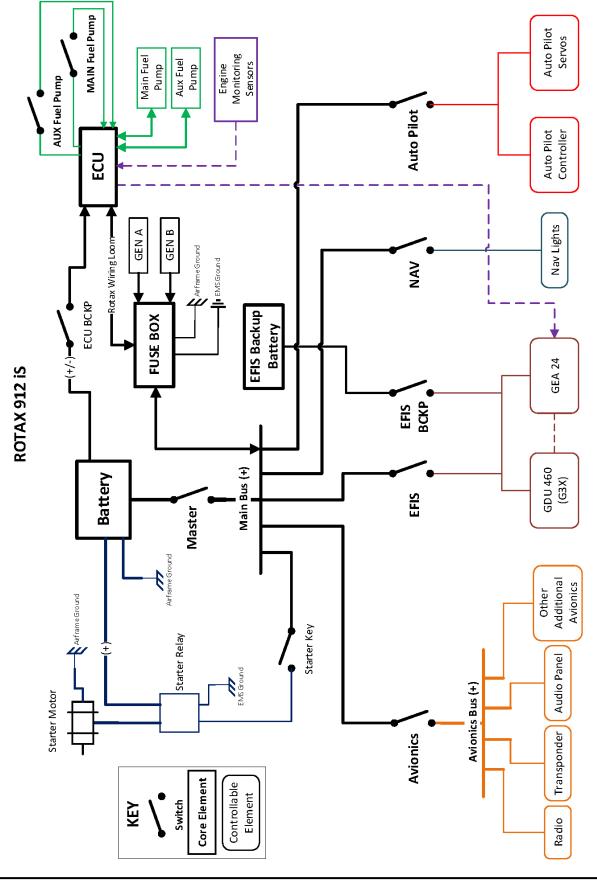
Cylinders are air-cooled, though forced are circulation from the inlets on the nose of the cowl, over cooling fins on the barrels.

Cylinder heads are liquid cooled via a closed-circuit system, with an expansion tank. The pump is driven from the camshaft and circulates the coolant in the loop (cylinder heads / radiator).

The expansion tank is closed by a pressure cap. When the coolant temperature rises, there is a pressure increase and coolant is forced into the overflow bottle, mounted on the firewall. When the coolant cools down, the coolant in the overflow bottle is drawn back into the expansion tank.

Conventional ethylene glycol coolant and distilled water mixture (1:1). Please refer to the latest edition of the engine manufacturers operators and maintenance manual.

The coolant volume is approximately 2.5 litres (0.66 US Gal.)


WARNING

Waterless coolant (*propylene-glycol*) may not be mixed with conventional (*ethylene-glycol/water*) coolant or additives. Mixture can lead to damage of the cooling system and subsequently the engine.

7.13 Electric System

7.13.2 Charge System

The alternating current (AC) output of the two alternators (A and B) is passes through a rectifier, where it is converted to direct current (DC) for the aircraft systems. The charge system output is approximately 13.5 to 14V (from 1000 +/- 250 rpm and higher). When a third external alternator is installed, the output is used to charge the battery through a breaker switch.

7.13.3 Main Battery

The 12V, 17 Ah main battery is mounted on the engine side of the firewall.

7.13.4 Main Bus

When power to the main bus is unavailable / fails, the following equipment will become non-operational:

#	Item
1	Autopilot (specifically, the servos)
2	Flaps
3	Radio
4	Transponder
5	Cabin Lights
6	Strobe, navigation, landing and taxi lights.
7	EFIS (unless powered by the EFIS battery back-up)

7.13.5 EFIS Back-up Battery / Circuit

The 12V EFIS back-up battery is mounted on the cabin side of the firewall, under the instrument panel.

7.13.6 Master and Starter Switches

The master switch is a toggle switch located on the left side of the instrument panel. It links the main bust to the 12V battery / charge system.

The starter switch is a key switch that is mounted on the left side of the instrument panel. It activates the starter motor.

7.13.7 Ignition Switches

Two ignition switches, one for each system, are located on the lefthand side of the panel. The switches are marked as 'LANE A' and 'Lane B', and are two separate ignition circuits.

NOTE

The engine ignition system is independent of the aircraft electrical system (except for starter motor operation) and will operate even with the master switch and / or any circuit breaker(s) off. <u>The 912 iS engine</u> requires adequate power supply to at least one electrical fuel pump to remain operational (to prevent fuel starvation).

7.13.8 Electrical Equipment Switches

Lever type switches are used, and are ON in the UP position, and OFF in the DOWN position. There are exceptions to this, for instance, the taxi light switch is a three-way switch, i.e. ON-WIG WAG-OFF.

7.13.9 Circuit Breakers

Circuit breakers are push-to-reset (i.e. push in) for restoring/supplying electrical power to their corresponding electrical circuits. Circuit breakers are located on the instrument panel.

7.14 Propeller

There are two common options for the propeller, with the default being the first:

- 1. Warp Drive, 72-inch, solid composite, ground adjustable, 3-blade, composite propeller.
- 2. Whirlwind, 70-inch, hollow composite, ground adjustable, 3-blade propeller.
- 3. Sensenich 65-inch, hollow composite, ground adjustable, 3-blade propeller.

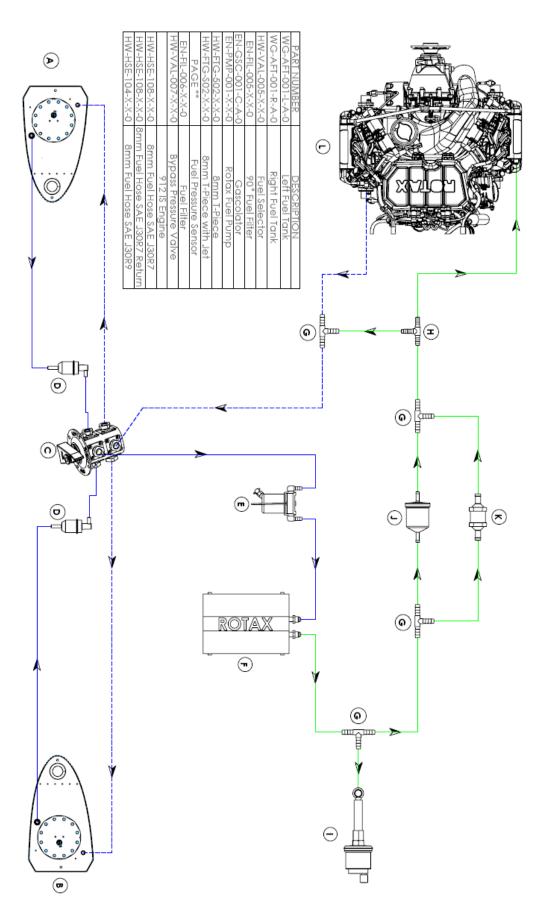
NOTE

For technical data refer to documentation supplied by the propeller manufacturer.

7.15 Fuel System

The aircraft makes use of a fuel tank located in the leading edge of each wing (only right in South Africa). The tank is equipped with a vent (underneath the wing) and a finger screen (at fuel pickup). A drain valve is located at the lowest point of the tank to collect possible contaminates, such as water. The tank outlet leads to the fuel selector valve, situated on the central console in the cockpit. From there, it leads to the engine through two electric fuel pumps and past a fuel pressor sensor, which is displayed on the EFIS. The fuel return then is routed back to the respective tank, which returns excess fuel supplied by the pumps and not used by the engine.

Total volume of the wing tank(s) are:


- RSA
 - o 75 litres (73 litres useable)
 - 19.8 gal. (19.3 US gal. useable)
- International, including United States.
 - o 150 litres (146 litres useable)
 - 39.6 gal. (38.5 gal. useable)

WARNING

The fuel pick-up pipe in the fuel tank is situated adjacent to the lower inside wall of the tank. The aircraft should at no time be subjected to a sustained sideslip towards a near empty fuel tank, as it may cause air to be drawn into pickup, as fuel will run to the tip end of the tank. This poses a significant threat when at low altitudes, such as landing.

A diagram of the fuel system is as follows, with a key –

	Fuel System Diagram Key – 912 iS				
Α	Port (left) fuel tank	G	8mm T-piece		
	(International version only)				
В	Starboard (right) fuel tank	Н	8mm T-piece with jet		
С	Fuel selector (OFF, ON, OFF)	I	Fuel pressure sensor		
D	Fuel filter (90° bend)	J	Fuel filter		
Ε	Gascolator	Κ	Bypass pressure valve		
F	Rotax fuel pump	L	912 iS Engine		

7.15.1 Main and Auxiliary Fuel Pumps

The main and auxiliary fuel pumps are powered via the EMS/ECU. As long as power is available to the EMS/ECU, both fuel pumps can be selected/operated, irrespective of the master switch status.

WARNING

At least one fuel pump must be operational at all times during flight for the engine to be operational with no pump operational engine stoppage will occur due to fuel starvation.

7.16 Lubrication System

This information is relevant for the 912 iS. For information regarding the 912 ULS, please see the appendix at the back of this manual.

The engine is provided with a dry sump forced lubrication system with a camshaft driven pump, with an integrated pressure regulator. The pump delivers oil from the oil reservoir, through an oil cooler and oil filter to points of lubrication.

Surplus oil emerging from the points of lubrication gather at the bottom of the crankcase from where it is forced back to the oil reservoir by piston blow-by gasses.

Oil temperature is sensed by a sensor located on the crankcase.

The lubrication circuit is vented at the oil reservoir. The oil reservoir is mounted on the firewall.

The lubrication system has an approximate volume of 3.5 litres (3.7 Quarts/7.4 pints).

7.17 Autopilot System

The autopilot system is integrated into / with the EFIS unit.

The EFIS / autopilot inputs data from an electronic compass and AHRS. With this, it controls two servos (one for pitch and one for roll), linked to the aircraft control system.

Power to the servos is controlled via a switch labelled AUTOPILOT, located at the instrument panel. This switch must be on for the autopilot to have any effect.

The autopilot can be engaged by:

- The autopilot engage / disengage button on the control sticks(s)
- Via the EFIS screen interface

The autopilot can be disengaged by:

- The autopilot engage / disengage button on the control sticks(s).
- Via the EFIS screen interface
- A servo reports a slipping clutch or torque overdrive for 1 second, i.e., the pilot overrides the autopilot via force in the control column.
- Removing power to the autopilot servos, at the isolating switch, removing the ability of the controller to control the servos.

7.18 Position, Anti-collision, Taxi and Landing Lights

The aircraft is equipped with a landing and taxi light in the leading edge of the wing. The standard option is left wing only, with an optional extra for left and right wing. This is typically a requirement for IFR rated aircraft. The control of these lights are through switchs labelled (LAND) and (TAXI). With the dual light option, the TAXI switch is a three-way switch controlling ON-WIG WAG-OFF.

Combination navigation/position lights (red, green and white) and anti-collision lights (white) are fitted to the wingtips, in the standard configuration (red left, green right). A combination position/anticollision light (white) is fitted underneath the vertical stabilizer.

The white lights on the wingtips and rudder are dual function lights, that can either be on continuously (*position light*), flash (*anti-collision*), or flash at a higher brightness level superimposed on continuous operation, i.e., combination position and anti-collision light.

	Light Element					
Switch	Landing	Taxi	Red / Green	White	White	
	Lanung	Taxi	Wingtips	Wingtips	Empennage	
TAXI		ON				
WIG-		ON				
WAG		(Flashing)				
LAND	ON					
NAV			ON	ON	ON	
				(Steady)	(Steady)	
STROBE				ON	ON	
STROBE				(Flashing)	(Flashing)	

The method of control of all lights is:

Sling LSA Pilot Operating Handbook

8 Ground Handling and Servicing

8.1	Introduction	8-1
8.2	Ground Handling	8-1
8.3	Servicing	8-5
8.4	Cleaning and Care	8-7

8.1 Introduction

This section contains factory-recommended procedures for proper ground handling and servicing of the Sling LSA. It also identifies certain inspection and maintenance requirements, which should be followed at all times. Full details for servicing and maintenance appear in the aircraft maintenance manual. *This document does not replace the maintenance manual*.

8.2 Ground Handling

8.2.1 Taxiing

When taxiing, it is important to use all controls at their minimum to achieve what is required, such as the throttle and brakes. Speed must be kept to a minimum during all ground operations. Caution must be taken in windy conditions, and the following control inputs must be made, depending on wind direction (originating from):

Wind Direction (Originating From)	Control	Action
Front	Elevator	Nose Down
Front Left	Elevator	Neutral
	Aileron	Roll Left
Front Dight	Elevator	Neutral
Front Right	Aileron	Roll Right
Dearlaft	Elevator	Nose Down
Rear Left	Aileron	Roll Right
Door Diaht	Elevator	Nose Down
Rear Right	Aileron	Roll Left
Rear	Elevator	Nose Down

8.2.2 Towing

If you wish to move the aircraft, other than under its own power, it is best to pull/push the aircraft by holding one or more of the propeller blades, close to the spinner. The rear fuselage/empennage may be pushed down directly above the bulkhead or close to the root on the horizontal stabilizer, directly above the front spar where it attaches to a rib. This for lifting the nosewheel for manoeuvring purposes.

It is also acceptable to push the aircraft backwards by putting pressure on the wing/horizontal stabilizer leading edge, directly over a rib.

CAUTION

Avoid excessive pressure on the aircraft airframe - especially at or near control surfaces. The skins are thin and minimum pressure should be placed on them. Excessive pressure could lead to the buckling of the skin.

8.2.3 Parking

It is advisable to park the aircraft inside a hangar, or alternatively inside other suitable spaces, with good temperature, good ventilation, low humidity and dust-free.

When parking for extended for extended periods, cover the cockpit canopy, and possibly the whole aircraft by means of a suitable tarpaulin.

When parking the aircraft outside, avoid parking for extended periods of time. Cover the panel/interior with a suitable cover or canopy cover to avoid degradation of the upholstery due to the sun.

8.1.1. Mooring

The aircraft should be tied down when parked outside the hangar. Mooring is necessary to protect the aircraft against possible damage caused by wind and gusts.

For this reason, the aircraft is equipped with mooring eyes located on the lower surfaces of the wings and one under the tail.

The mooring procedure is as follows:

- 1. Fuel Selector OFF 2. Switches.....ALL OFF 3. Master OFF Ignition / Lanes OFF 4. Control Column......SECURE^(a) 5. 6. Air Vents CLOSE Canopy.....CLOSE AND LOCK 7. 8. 9.
- Chocks.....INSTALL

NOTES

- a. Through use of a, for example, safety harness.
- b. Typically, rope will be used to connect the aircrafts mooring eye, with a mooring eye fastened in the ground/concrete.

NOTE

In the case of long-term parking, especially during winter, it is recommended to cover the cockpit canopy, or possibly the whole aircraft, by means of a suitable tarpaulin attached to the airframe.

8.2.4 Road Transporting

The aircraft may be transported after loading on a suitable, aircraft specific trailer, or a flatbed with suitable rigging. It is necessary to remove the wings before road transport. It is suggested that the wings should be securely stored in a cradle of some kind.

8.3 Servicing

8.3.1 Jacking

Since the empty weight of the aircraft is relatively low, two people are usually able to lift the aircraft.

It is possible to lift the aircraft in the following manner:

- By pushing the rear fuselage section down above the bulkhead, the fuselage front section may be raised, and a support paced under the firewall. The same effect can be achieved by pushing down on the horizontal stabilizer as described under 8.2.2 Towing.
- By lifting the rear fuselage under a bulkhead, the rear fuselage may be raised and then supported under that bulkhead. The support should comprise of a large, flat surface to avoid damage to the under-fuselage skin. The winds should also be gently supported to prevent the aircraft from rolling as its weight shifts to the nose wheel.
- To lift a wing, push from underneath the wing at the main spar only, and use a support with a large surface area again. Do not attempt to lift the wing by placing force on the composite wingtip.
- A wheel can be lifted by either lifting the wing, or jacking under the wheel strut where it meets the fuselage.

8.3.2 Aircraft Inspection/Servicing Periods

Periods of checks and contingent maintenance depend on operating conditions and overall condition of the aircraft.

Inspections and servicing should be carried out according to (at least) the following periods:

After first flight	25 flight hours	ours or oppually
And thereafter every whichever first. of the	_	ours or annually, d in the latest revision engine/propeller
manufacturer	documentation	0 11 1
	NOTES	

a. Both the manufacturers' Operators Manual and Maintenance Manual

More detail is supplied in the *Sling LSA Maintenance Manual*.

8.3.3 Aircraft Modifications and Repairs

It is recommended that you contact the aircraft manufacturer prior to making any modifications to the aircraft, to ensure that the airworthiness of the aircraft is not affected. Always use only the original spare parts, produced by the aircraft/engine/propeller manufacturer.

If the aircraft's weight is affected by the modification, a new mass and balance calculation is necessary. This should be completed comprehensively and recorded in all relevant documentation.

8.3.4 Servicing fuel, Oil and Coolant

This document makes a brief statement on these topics in Section 1. Before carrying out any work, refer to the Rotax Maintenance and Operators Manual, along with the Sling LSA Aircraft Maintenance Manual.

8.4 Cleaning and Care

Use efficient cleaning detergents to clean the aircraft, such as regular car wax or degreaser. Detergents with a wax coating will better preserve the paintwork of the aircraft. Oil spots on the aircraft surface *(except for the canopy)* may be cleaned with petrol/gasoline.

The canopy may only be cleaned by washing it with a sufficient quantity of lukewarm water and an adequate amount of compatible detergent. Use either a soft, clean cloth sponger or deerskin. Then use suitable dry polishers/soft cloth to clean the canopy.

Upholstery and covers may be removed from the cockpit, brushed and washed in lukewarm water, with an adequate quantity of detergents. Dry the upholstery before refitting.

CAUTION

<u>Never</u> clean the canopy under dry conditions or use petrol or chemical solvents.

9 Supplementary Information

9.1	Introduction	-1
9.2	Supplement 02/2010 – Airplanes fitted with a Magnum 60	01
Ballist	tic Parachute	-2
9.3	Supplement 04/2012 – Airplanes Fitted with a Rotax 912 U	LS
Engin	e9	-4
9.4	Supplement 03/2010 – Airplanes Fitted with and Airmaster AP33	32
Prope	eller	16

9.1 Introduction

This section contains the appropriate supplements necessary to safely and efficiently operate the aircraft when equipped with various common optional extras not supplied with the standard aircraft.

The supplements included in this manual are –

Date	Supplement No.	Title of inserted supplement
04/06/12	02/2010	Airplanes fitted with a Magnum 601 Ballistic Parachute recovery system
19/10/12	04/2012	Airplanes fitted with a Rotax 912 ULS engine
09/05/19	03/2010	Airplanes fitted with an Airmaster AP332 propeller

9.2 Supplement 02/2010 – Airplanes fitted with a Magnum 601 Ballistic Parachute

9.2.1 Introduction

This supplement must be kept with the Pilot Operating Handbook during operation of the airplane.

The information contained in this supplement adds to or replaces information from the standard Pilot Operating Handbook, with regards only to the specific sections addressed herein. Limitations, procedures and information not specifically addressed in this supplement remain as set out in the Pilot Operating Handbook.

This supplement provides information necessary for the operation of an aircraft fitted with a Magnum 601 ballistic parachute.

- The Sling LSA is specifically designed for convenient fitment of the Magnum 601 ballistic parachute recovery system, manufactured by Stratos 07. The system is designed to enable the pilot or passenger to deploy the parachute, in case of an emergency, in such a manner that the aircraft structure is carried under the parachute to the ground. Thus, to ensure that the occupant will not be injured, and the aircraft suffers minimum damage.
- Use of a ballistic parachute system involves inherent risks, and the system sold be properly understood by the pilot prior to use.

9.2.2 Ballistic Parachute Operational Parameters

Parameter	Value
Limit Deployment Speed	320 km/h <i>or</i> 173 kt.
Deployment Time (at Limit Speed)	3 s
Maximum Supported Mass	759 kg <i>or</i> 1674 lb.
Decent Rate (at Maximum Mass)	7 m/s

9.2.3 Ballistic Parachute Deployment Procedure

1.	Speed	BELOW 173 kt.
		DEPLOY (AS SLOW AS PRACTICABLE)
2.	Throttle	CLOSE
3.	Ignition Lanes / Magnetos	OFF
4.	Fuel Pump(s)	OFF (BOTH)
5.	Fuel Selector	OFF
6.	Harnesses	SECURE & TIGHT
7.	Security	ALL LOSE OBJECTS SECURE
8.	Parachute	DEPLOY
		PULL ACTIVATION HANDLE
	before impacting the ground –	
9.	Master	OFF
10.	Avionics	OFF
11.	Other Electrical Equipment.	ALL OFF

9.3 Supplement 04/2012 – Airplanes Fitted with a Rotax 912 ULS Engine

9.3.1 Introduction

This supplement must be kept with the Pilot Operating Handbook during operation of the airplane.

The information contained in this supplement adds to or replaces information from the standard Pilot Operating Handbook, with regards only to the specific sections addressed herein. Limitations, procedures and information not specifically addressed in this supplement remain as set out in the Pilot Operating Handbook.

This supplement provides information relating to the operation of an aircraft fitted with a Rotax 912 ULS engine.

The Rotax 912 ULS makes use of dual carburettors and is not electronically controlled like the iS version. The ULS has the same power rating as the iS and airplane performance with the two engines materially similar. Better fuel economy, especially in cruise, may be observed with the iS engine.

There are minor differences between the engines at starting and shutdown, and in the case of certain engine related emergency procedures. The instructions in this supplement are the minimum required for the pilot to competently operate the 912 ULS engine. It is the responsibility of the pilot to fully familiarize themselves with the engine Operators Manual supplied by Rotax GmbH. A copy of this document is supplied with the aircraft.

9.3.2 Rotax 912 ULS Engine Operating and Speed Limits

Engine Start and Operation Temperature Limits	
Maximum Ambient Temperature	50 °C (122 °F)
Minimum Oil Temperature	-25 °C (-13 °F)

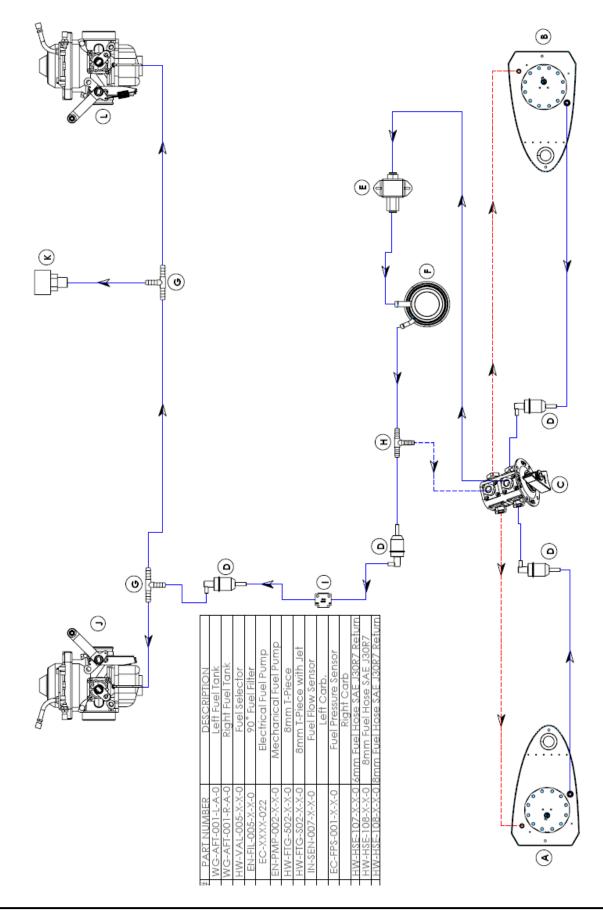
Engine Load Factor Limits (Acceleration)	
Maximum	5 seconds at -0.5g

Engine Bank Angle Limits	
Maximum	40°

Sling LSA Pilot Operating Handbook

Item		Value
Engine Model		ROTAX 912 ULS
Engine Manufacturer		Bombardier-Rotax GMBH
Power	Maximum take-off	73.5 kW / 100 hp at 5800 rpm, max. 5 minutes
	Maximum continuous	69 kW / 92 hp at 5500 rpm
	Maximum take-off	5800 rpm, max. 5 minutes
RPM	Maximum continuous	5500 rpm
	Idle	1 400 rpm (minimum)
Culinder head	Minimum	N/A
Cylinder head	Maximum	135 °C (275 °F)
temperature	Normal	75 to 110 °C (167 to 230 °F)
	Minimum	50 °C (122 °F)
Oil temperature	Maximum	130 °C (266 °F)
	Normal	90 to 110 °C (194 to 230 °F)
EGT	Maximum	880 °C (1616 °F)
Coolant temperature	Maximum	120 °C (248 °F)
	Minimum	0.8 bar (12 psi) – below 3500 rpm
Oil pressure	Maximum	7 bar (102 psi) – permissible for short period during cold engine start
	Normal	2 to 5 bar (29 to 73 psi) – above 3500 rpm
Fuel Pressure	Minimum	0.15 bar (5.8 psi)
ruerPressure	Maximum	0.5 bar (7.26 psi)

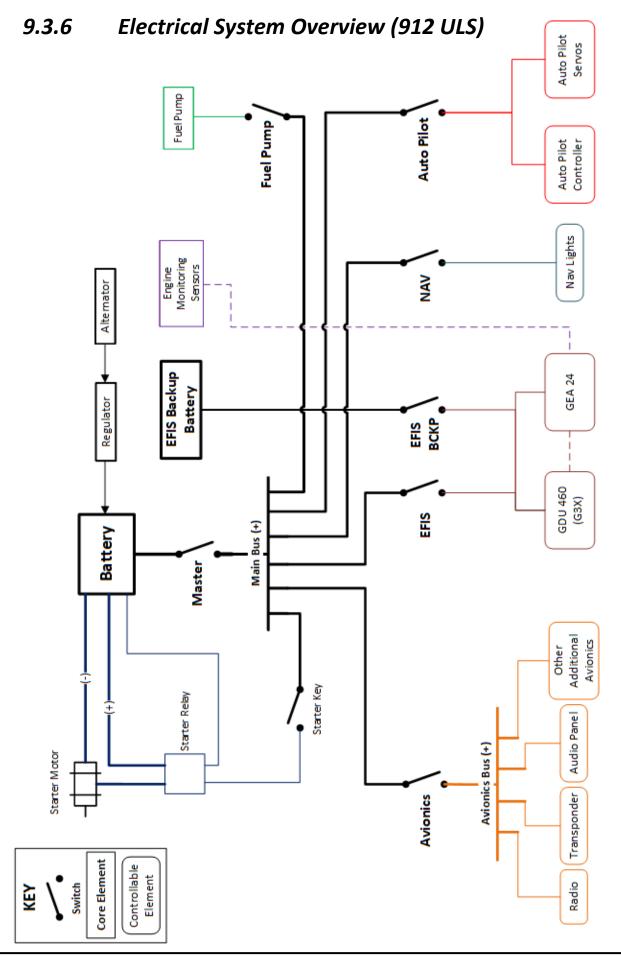
9.3.3 Rotax 912 ULS Fuel, Oil and Coolant Specifications


Fuel and oil specification are the same as the 912 iS motor.

Coolant					
Item	Value				
Cooling System	<i>Mixed</i> – Air and close circuit pressurized liquid.				
Cooling System	Air cooled cylinders and liquid cooled cylinder heads				
	Ethylene glycol-based coolant mixed 1:1 with distilled				
Coolant	water.				
COOIdIIL	Applicable for engine S/N without suffix -01 –				
	Waterless Coolant.				
Coolant Capacity	Approx. 2.5 litres (5.28 pints)				

Refer to the latest revision of the Rotax ULS Operator / Maintenance Manual and to the latest revisions of the Rotax service instruction with regards to the selection of operating fluids.

9.3.4 Rotax 912 ULS Fuel System


Fuel System Diagram Key – 912 ULS				
Α	Port (left) fuel tank	G	8mm T-piece	
	(International version only)			
В	Starboard (right) fuel tank	H	8mm T-piece with jet	
С	Fuel selector (LEFT, RIGHT, OFF)	I	Fuel flow sensor	
D	Fuel filter (90° bend)	J	Port (left) carburettor	
Ε	Electric fuel pump	Κ	Fuel pressure sensor	
F	Mechanical fuel pump	L	Starboard (right) carburettor	

9.3.5 Electrical Switches

SWITCH / LABEL	FUNCTION	POSITION
MASTER /	Power disconnected from main bus.	OFF
STARTER KEY	Main bus connected to power.	ON
SWITCH	Engage starter motor.	START
EFIS	Switch power (main bus) to EFIS system on/off.	
EFIS BKUP	Connects EFIS to EFIS back-up battery.	
FUEL PUMP	Switch main fuel pump on/off.	
LAND	Switch landing lights on/off.	UP
ΤΑΧΙ	Switch taxi lights on/off.	ON
NAV	Select position (navigation) lights.	
STROBE	DNICS Switch power to radio and transponder on/off	
AVIONICS		
AUTOPILOT	Switch power to autopilot servos on/off. OFF	
MASTER	Switch power to main bus on/off.	
IGNITION	Switch on key; Mag A, Mag B, Both, Start	

Section 7 Supplementary Information

Document Number: DC-POH-002-X-A-6 Revision: 3.0

Page | 9-10 Date: 2021/04/23

9.3.7 Master and Starter Switches

The master switch on the 912 ULS equipped aircraft provides the following functionality:

• Connects / disconnects the main battery to the main bus.

The ignition switch on the 912 ULS equipped aircraft provides the following functionality:

- Selection of the magneto (A, B, BOTH)
- Activation of the starter

9.3.8 Electrical Power Generation and Failure

Unlike the 912 iS, the 912 ULS only has one internal alternator, which is rectified and regulated to charge the main battery. If this alternator fails, the engine will continue to run. The ULS does not make use of an ECU, but uses magnetos and carburettors instead, which is why it can run after an alternator failure. All non-essential equipment must be turned off to ensure that battery is conserved before being able to land. Utilize the capacity of the EFIS backup battery fully, then when it goes flat, switch back to the main battery. This will ensure that all battery resource is used to power all instruments at once i.e., EFIS, Radio, Transponder, Flaps, Trim etc.

9.3.9 Emergency Procedures (Alternative)

9.3.9.1 Air-Start

- 1. Fuel Pump..... ON
- 2. Fuel Selector CHANGE (UNLESS 2ND TANK DRY)
- 3. Throttle CHECK MOVEMENT
- 4. Throttle MIDDLE POSITION
- 5. Master ON
- 6. Magnetos..... BOTH ON
- 7. Starter..... ENGAGE

9.3.9.2 Irregular Engine RPM

- 1. Magnetos..... BOTH ON
- 2. Throttle VERIFY POSITION
- 3. Fuel Quantity CHECK
- 4. Fuel Selector CHANGE (UNLESS 2ND TANK DRY)
- 5. Fuel Pump..... ON
- 6. Oil Pressure CHECK
- 7. Oil Temperature..... CHECK
- 8. Coolant Temperature CHECK
- 9. EGT Temperature CHECK
 - If engine continues to run rough –
- 10. Precautionary Landing AS SOON AS POSSIBLE

9.3.9.3 Alternator Failure

An alternator failure is characterized by the charge warning light being illuminated on the instrument panel.

- 1. Battery / Charge Voltage VERIFY FAILURE^(a)
- 2. Non-Essential Equipment.... OFF
- 3. EFIS Back-up..... ON
- 4. EFIS Screen Brightness MINIMUM
- 5. Radio Communications MINIMUM
- 6. Land AS SOON AS PRACTICABLE

NOTES

a. If alternator is operating correctly, the voltage will be above 13V.
 If the charge circuit has failed, this voltage will be below 13V.

9.3.10 Normal Procedures (Alternative)

9.3.10.1 Engine Start

- 1. Fuel Selector..... EMPTIEST TANK (IF NOT EMPTY)
- 2. EFIS Backup Switch ON (VERIFY BATTERY VOLTAGE)
- 3. EFIS Main Switch ON
- 4. Master Switch ON
- 5. Magnetos ON
- 6. Fuel Pump ON (NO ABNORMAL SOUND)
- 7. Fuel Pressure VERIFY (WITHIN RANGE)
- 8. Fuel Pump OFF
- 9. ChokeON (IF REQUIRED)
- 10. Throttle SET (+ -50%)
- 11. Propeller.....AREA CLEAR
- 12. Starter ENGAGE (MAX. 10 SECONDS)
- 13. ChokeOFF (WHEN ENGINE RPM STABLE)
- 14. Oil Pressure CHECK (CORRECT WITHIN 10 SECONDS)
- 15. Throttle+/- 2500 RPM
- 16. Battery Voltage.....VERIFY CHARGE ^(a)
- 17. Avionics Switch.....ON

.....is < 50 °C (122 °F)^(b)

CAUTION

- a. Main bus voltage should move up from +/- 12.5V to above 13V when the charge circuit is active.
- b. When the oil is below 50 °C, the oil filter is bypassed due to the increased viscosity of the oil. *Significant throttle settings must not be used during this period, as it may cause damage.*

9.3.10.2 Run Up & Pre-Takeoff

1.	Face into wind	IF POSSIBLE
2.	Oil Temperature	ABOVE 50°C
3.	Fuel Pump	ON
4.	Engine	4000 RPM
5.	MAG A	OFF (2 SEC., NO MORE THAN 180 RPM DROP)
		ON
6.	MAG B	OFF (2 SEC., NO MORE THAN 180 RPM DROP)
		ON
7.	Fuel Pressure	CHECK (CORRECT AND STABLE)
8.	Engine	2500 RPM
9.	Fuel Quantity	VERIFY (SUFFICIENT FOR PLANNED FLIGHT)
10.	Fuel Selector	FULLEST TANK
11.	Circuit Breakers	ALLIN
12.	Switches	CHECK AND SET AS REQUIRED
13.	Instruments	CHECK AND SET ALL
14.	Controls	FREE & FULL / CORRECT SENSE
15.	Trim	SET NEUTRAL
16.	Flaps	SET STAGE 1 / TAKEOFF
17.	Engine Parameters	VERIFY (TEMPERATURES, PRESSURES, VOLTAGES)
18.	Canopy	CLOSED / LATCHED
19.	Harness	SECURE (CORRECTLY FASTENED AND TIGHT)
20.	Brief Passengers	BRIEF

9.4 Supplement 03/2010 – Airplanes Fitted with and Airmaster AP332 Propeller

9.4.1 Introduction

This supplement must be kept with the Pilot Operating Handbook during operation of the airplane.

The information contained in this supplement adds to or replaces information from the standard Pilot Operating Handbook, with regards only to the specific sections addressed herein. Limitations, procedures and information not specifically addressed in this supplement remain as set out in the Pilot Operating Handbook.

This supplement provides information necessary for the operation of an aircraft fitted with an Airmaster AP332 variable pitch, constant speed propeller.

Propeller control is via an electronic control unit mounted on the instrument panel.

Power to the propeller/propeller controller is provided via the main bus and activated by a switch labelled PROP, located on the instrument panel.

9.4.2 Observed Improvements

Fitment of an Airmaster AP332 propeller to the aircraft will substantially improve aircraft performance relative to the use of a fixed pitch propeller. General improvement will be witnessed, where the aircraft is fitted with a Rotax 912 ULS or 912 iS engine, in relation to:

	Improvements			
1	V _h will be increased from 116 KIAS to 120 KIAS			
2	The aircraft service ceiling will increase to 14,000 ft.			
3	Take-off distance on concrete and grass will improve from 120m			
	(395ft.) and 140m (460ft.), to 100m (328ft.) and 120m (394ft.)			
	respectively with the AP332 propeller.			
4	Take-off distance (Over 15m, 50ft) on concrete and grass will			
	improve from 230m (755ft.) and 250m (820ft.), to 160m (525ft.) and			
	180m (590ft.) respectively with the AP332 propeller.			
5	Rates of climb will improve at 0, 3000, 6000 and 9000ft. ISA will			
	improve from 800, 600, 500, 400 rpm to 900, 800, 700, 600 fpm.			
6	Cruise speeds will not be altered substantially, unless higher power			
	settings are used.			
7	Fuel consumption will not be changed unless higher power settings			
	are used.			

Reference should be made to the Operators Manual for the Airmaster AP332 Propeller operational guidelines and instructions. These should be incorporated into the normal and emergency procedure for the aircraft as applicable.

9.4.3 Propeller Control Failure (VP Only)

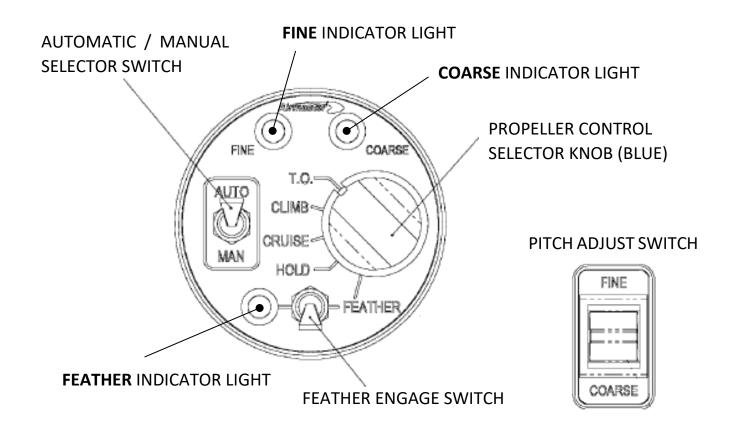
The propeller/propeller controller can fail in a variety of modes/ways. The pilot should completely familiarize themselves with the Airmaster propeller operator's manual, and specifically the section that deals with **Emergency Operation** and **Failure Modes**.

The following immediate actions should be taken in the event of any propeller control failure:

- 1. Engine Speed PREVENT OVERSPEED
- 2. Propeller Mode..... SELECT MANUAL (MAN)
- 3. Propeller Pitch VERIFY OPERATION *If propeller pitch control is still available* –
- 4. Propeller Pitch SET TO REQUIRED *If propeller pitch control is unavailable* –
- 5. Propeller switch OFF If failure results in pitch within flight range –
- 6. Proceed...... WITH CAUTION treat as if it is fixed propeller If failure results in pitch **outside** flight range –
- 7. Precautionary Landing EXECUTE

CAUTION

Selection of too fine a propeller pitch, and high throttle settings may result in an engine overspeed.


Selection of too coarse a propeller pitch may result in the engine being unable to maintain the desired engine speed, even at full throttle.

CAUTION

If failure occurred with propeller pitch set at any other pitch than the fine pitch limit, full power from the engine/propeller combination may not be available at low speeds. **Consideration should be given to this during approach and landing.**

9.4.4 Pilot Controls – Propeller

9.4.4.1 *Operation of the propeller controls*

- The power switch, labelled **PROP**, located on the instrument panel. This switch activates/deactivates the power supply to the propeller control unit and propeller pitch adjustment motor.
- Automatic/Manual [AUTO/MAN] selector switch, located on the propeller controller, changes the propeller mode between automatic and manual.
 - AUTO Automatic mode operation allows constant speed governing in pre-set modes i.e. Take-off, climb, cruise and hold.
 - MAN manual mode operation allows direct control over the propeller pitch, allowing the propeller to become a more traditional in-flight variable pitch propeller.
- **Propeller control selector**, the blue rotary knob, allows the pilot to change between pre-set propeller settings. This knob has no effect when manual [MAN} is selected on the automatic/manual selector switch. These pre-set setpoints are:
 - **T.O.** Use for take-off and landing.
 - **CLIMB** Use for climbing and any other operations where continuous high-power settings are required.
 - **CRUISE** Use for cruise and normal operation.
 - HOLD Use for constant speed governing at a pilot selected speed not a part of the options above.
- Feather engage switch is active when the AUTO mode is selected on the automatic/manual selector switch, and the propeller control selector is set to FEATHER. Engaging this switch will initiate the automatic feathering of the propeller.

- Manual propeller control switch is a toggle button, located separately from the propeller controller unit on the instrument panel. This switch allows:
 - Direct control of the propeller pitch when manual mode (MAN) is selected with the automatic/manual selector switch.
 - Moving the switch up moves the propeller in the fine direction. The fine indicator light should be illuminated orange during this operation.
 - Moving the switch down moves the propeller in the coarse direction. The coarse indicator light should be illuminated orange in this operation.
 - With the automatic/manual switch set to AUTO, and the propeller control selector knob selected to HOLD, the switch (manual propeller control) is used to set a pilot selected propeller governing speed.
 - Actuate the switch to change the propeller pitch in the direction desired. When the desired rpm is reached, release the switch. The propeller/engine will be governed to that speed.
 - Set the desired power with the throttle.

NOTE

When power is initially applied to the propeller controller, the speed setting at which the HOLD mode will govern the propeller is set equal to the pre-set CRUISE mode governing speed, until altered by pilot selection.

Document Number: DC-POH-002-X-A-6 Revision: 3.0

9.4.4.2 Indicator Lights

Information conveyed to the pilot by the propeller system is through three lights located on the propeller controller, namely Coarse, Fine and Feather indicators lights. The following table lists the various propeller status indications provided by the lights.

Indicator	Light	Propeller Status		
	Orange	Pitch decreasing		
	Orange Flashing	No speed signal		
FINE	Green	Fine pitch limit		
	Green Flashing	Pitch motor engaged at fine pitch limit		
	Red	Over-current while pitch decreasing		
	Orange	Pitch increasing		
COARSE	Green	Coarse pitch limit		
CUARSE	Green Flashing	Pitch motor engaged at coarse pitch limit		
	Red	Over-current while pitch increasing		
	Orange	Pitch Increasing in Feather		
	Green	Feather pitch limit		
FEATHER	Green Flashing	Pitch motor engaged at feather pitch limit		
	Red	Over-current while pitch increasing in		
		feather		
ALL	Red Flashing	Open circuit failure		
ALL	Rapid-Red Flashing	Controller software fault		

When the propeller is in manual mode, many of the indicator lights will still operate.